Step |
Hyp |
Ref |
Expression |
1 |
|
subgngp.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) |
2 |
1
|
subggrp |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
3 |
2
|
adantl |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Grp ) |
4 |
|
ngpms |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) |
5 |
|
ressms |
⊢ ( ( 𝐺 ∈ MetSp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ MetSp ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ MetSp ) |
7 |
1 6
|
eqeltrid |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ MetSp ) |
8 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) |
9 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) |
10 |
1
|
subgbas |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
12 |
9 11
|
eleqtrrd |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑥 ∈ 𝐴 ) |
13 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) |
14 |
13 11
|
eleqtrrd |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑦 ∈ 𝐴 ) |
15 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
16 |
|
eqid |
⊢ ( -g ‘ 𝐻 ) = ( -g ‘ 𝐻 ) |
17 |
15 1 16
|
subgsub |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) |
18 |
8 12 14 17
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) |
19 |
18
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
20 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
21 |
1 20
|
ressds |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( dist ‘ 𝐺 ) = ( dist ‘ 𝐻 ) ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( dist ‘ 𝐺 ) = ( dist ‘ 𝐻 ) ) |
23 |
22
|
oveqd |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) ) |
24 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝐺 ∈ NrmGrp ) |
25 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
26 |
25
|
subgss |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
27 |
26
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
28 |
27 12
|
sseldd |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
29 |
27 14
|
sseldd |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
30 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
31 |
30 25 15 20
|
ngpds |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) |
32 |
24 28 29 31
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) |
33 |
23 32
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) |
34 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
35 |
34 16
|
grpsubcl |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
36 |
35
|
3expb |
⊢ ( ( 𝐻 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
37 |
3 36
|
sylan |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
38 |
37 11
|
eleqtrrd |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ 𝐴 ) |
39 |
|
eqid |
⊢ ( norm ‘ 𝐻 ) = ( norm ‘ 𝐻 ) |
40 |
1 30 39
|
subgnm2 |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ 𝐴 ) → ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
41 |
8 38 40
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
42 |
19 33 41
|
3eqtr4d |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) = ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
43 |
42
|
ralrimivva |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) = ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
44 |
|
eqid |
⊢ ( dist ‘ 𝐻 ) = ( dist ‘ 𝐻 ) |
45 |
39 16 44 34
|
isngp3 |
⊢ ( 𝐻 ∈ NrmGrp ↔ ( 𝐻 ∈ Grp ∧ 𝐻 ∈ MetSp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) = ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) ) |
46 |
3 7 43 45
|
syl3anbrc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ NrmGrp ) |