| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgngp.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) |
| 2 |
1
|
subggrp |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 3 |
2
|
adantl |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Grp ) |
| 4 |
|
ngpms |
⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) |
| 5 |
|
ressms |
⊢ ( ( 𝐺 ∈ MetSp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ MetSp ) |
| 6 |
4 5
|
sylan |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ MetSp ) |
| 7 |
1 6
|
eqeltrid |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ MetSp ) |
| 8 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 9 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) |
| 10 |
1
|
subgbas |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
| 11 |
10
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
| 12 |
9 11
|
eleqtrrd |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 13 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) |
| 14 |
13 11
|
eleqtrrd |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑦 ∈ 𝐴 ) |
| 15 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
| 16 |
|
eqid |
⊢ ( -g ‘ 𝐻 ) = ( -g ‘ 𝐻 ) |
| 17 |
15 1 16
|
subgsub |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) |
| 18 |
8 12 14 17
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) |
| 19 |
18
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
| 20 |
|
eqid |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) |
| 21 |
1 20
|
ressds |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( dist ‘ 𝐺 ) = ( dist ‘ 𝐻 ) ) |
| 22 |
21
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( dist ‘ 𝐺 ) = ( dist ‘ 𝐻 ) ) |
| 23 |
22
|
oveqd |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) ) |
| 24 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝐺 ∈ NrmGrp ) |
| 25 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 26 |
25
|
subgss |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 27 |
26
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 28 |
27 12
|
sseldd |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 29 |
27 14
|
sseldd |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 30 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
| 31 |
30 25 15 20
|
ngpds |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) |
| 32 |
24 28 29 31
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) |
| 33 |
23 32
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) |
| 34 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 35 |
34 16
|
grpsubcl |
⊢ ( ( 𝐻 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
| 36 |
35
|
3expb |
⊢ ( ( 𝐻 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
| 37 |
3 36
|
sylan |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
| 38 |
37 11
|
eleqtrrd |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ 𝐴 ) |
| 39 |
|
eqid |
⊢ ( norm ‘ 𝐻 ) = ( norm ‘ 𝐻 ) |
| 40 |
1 30 39
|
subgnm2 |
⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ 𝐴 ) → ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
| 41 |
8 38 40
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
| 42 |
19 33 41
|
3eqtr4d |
⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) = ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
| 43 |
42
|
ralrimivva |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) = ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
| 44 |
|
eqid |
⊢ ( dist ‘ 𝐻 ) = ( dist ‘ 𝐻 ) |
| 45 |
39 16 44 34
|
isngp3 |
⊢ ( 𝐻 ∈ NrmGrp ↔ ( 𝐻 ∈ Grp ∧ 𝐻 ∈ MetSp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) = ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) ) |
| 46 |
3 7 43 45
|
syl3anbrc |
⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ NrmGrp ) |