Description: A substructure assigns the same values to the norms of elements of a subgroup. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subgngp.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| subgnm.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| subgnm.m | ⊢ 𝑀 = ( norm ‘ 𝐻 ) | ||
| Assertion | subgnm2 | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgngp.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| 2 | subgnm.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 3 | subgnm.m | ⊢ 𝑀 = ( norm ‘ 𝐻 ) | |
| 4 | 1 2 3 | subgnm | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝑀 = ( 𝑁 ↾ 𝐴 ) ) |
| 5 | 4 | fveq1d | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑀 ‘ 𝑋 ) = ( ( 𝑁 ↾ 𝐴 ) ‘ 𝑋 ) ) |
| 6 | fvres | ⊢ ( 𝑋 ∈ 𝐴 → ( ( 𝑁 ↾ 𝐴 ) ‘ 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) | |
| 7 | 5 6 | sylan9eq | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝐴 ) → ( 𝑀 ‘ 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |