Step |
Hyp |
Ref |
Expression |
1 |
|
subgntr.h |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
2 |
|
df-ima |
⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) “ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) = ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
4 |
1 3
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
7 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → 𝐽 ∈ Top ) |
8 |
5 7
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ Top ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐽 ∈ Top ) |
10 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
11 |
3
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
13 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
14 |
6 13
|
syl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
15 |
12 14
|
sseqtrd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ⊆ ∪ 𝐽 ) |
16 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
17 |
16
|
ntropn |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) |
18 |
9 15 17
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) |
19 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) |
20 |
6 18 19
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) |
21 |
20
|
resmptd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) = ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
22 |
21
|
rneqd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ran ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
23 |
2 22
|
syl5eq |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) “ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
24 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐺 ∈ TopGrp ) |
25 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
26 |
16
|
ntrss2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
27 |
9 15 26
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑆 ) |
28 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) |
29 |
27 28
|
sseldd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) |
30 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
31 |
30
|
subgsubcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) |
32 |
10 25 29 31
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) |
33 |
12 32
|
sseldd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) |
34 |
|
eqid |
⊢ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) |
35 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
36 |
34 3 35 1
|
tgplacthmeo |
⊢ ( ( 𝐺 ∈ TopGrp ∧ ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
37 |
24 33 36
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ) |
38 |
|
hmeoima |
⊢ ( ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ ( 𝐽 Homeo 𝐽 ) ∧ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∈ 𝐽 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) “ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ 𝐽 ) |
39 |
37 18 38
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ∈ ( Base ‘ 𝐺 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) “ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∈ 𝐽 ) |
40 |
23 39
|
eqeltrrd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝐽 ) |
41 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
42 |
24 41
|
syl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐺 ∈ Grp ) |
43 |
11
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
44 |
43
|
sselda |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
45 |
20 28
|
sseldd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
46 |
3 35 30
|
grpnpcan |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝐴 ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) = 𝑥 ) |
47 |
42 44 45 46
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) = 𝑥 ) |
48 |
|
ovex |
⊢ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ V |
49 |
|
eqid |
⊢ ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) |
50 |
|
oveq2 |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) = ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ) |
51 |
49 50
|
elrnmpt1s |
⊢ ( ( 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ∧ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ V ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
52 |
28 48 51
|
sylancl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝐴 ) ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
53 |
47 52
|
eqeltrrd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
54 |
10
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
55 |
32
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ) |
56 |
27
|
sselda |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) |
57 |
35
|
subgcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
58 |
54 55 56 57
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) ∧ 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
59 |
58
|
fmpttd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) : ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ⟶ 𝑆 ) |
60 |
59
|
frnd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝑆 ) |
61 |
|
eleq2 |
⊢ ( 𝑢 = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) → ( 𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ) ) |
62 |
|
sseq1 |
⊢ ( 𝑢 = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) → ( 𝑢 ⊆ 𝑆 ↔ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝑆 ) ) |
63 |
61 62
|
anbi12d |
⊢ ( 𝑢 = ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) → ( ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ↔ ( 𝑥 ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∧ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝑆 ) ) ) |
64 |
63
|
rspcev |
⊢ ( ( ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∈ 𝐽 ∧ ( 𝑥 ∈ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ∧ ran ( 𝑦 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ↦ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝐴 ) ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝑆 ) ) → ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) |
65 |
40 53 60 64
|
syl12anc |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 𝑥 ∈ 𝑆 ) → ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) |
66 |
65
|
ralrimiva |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑆 ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) |
67 |
|
eltop2 |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝑆 ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) ) |
68 |
8 67
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑆 ∈ 𝐽 ↔ ∀ 𝑥 ∈ 𝑆 ∃ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑢 ⊆ 𝑆 ) ) ) |
69 |
66 68
|
mpbird |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ ( ( int ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ∈ 𝐽 ) |