Database
BASIC ALGEBRAIC STRUCTURES
Groups
p-Groups and Sylow groups; Sylow's theorems
subgod
Metamath Proof Explorer
Description: The order of an element is the same in a subgroup. (Contributed by Mario Carneiro , 14-Jan-2015) (Proof shortened by Stefan O'Rear , 12-Sep-2015)
Ref
Expression
Hypotheses
submod.h
⊢ 𝐻 = ( 𝐺 ↾s 𝑌 )
submod.o
⊢ 𝑂 = ( od ‘ 𝐺 )
submod.p
⊢ 𝑃 = ( od ‘ 𝐻 )
Assertion
subgod
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑂 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐴 ) )
Proof
Step
Hyp
Ref
Expression
1
submod.h
⊢ 𝐻 = ( 𝐺 ↾s 𝑌 )
2
submod.o
⊢ 𝑂 = ( od ‘ 𝐺 )
3
submod.p
⊢ 𝑃 = ( od ‘ 𝐻 )
4
subgsubm
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ∈ ( SubMnd ‘ 𝐺 ) )
5
1 2 3
submod
⊢ ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑂 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐴 ) )
6
4 5
sylan
⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴 ∈ 𝑌 ) → ( 𝑂 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐴 ) )