Database BASIC ALGEBRAIC STRUCTURES Groups p-Groups and Sylow groups; Sylow's theorems subgod  
				
		 
		
			
		 
		Description:   The order of an element is the same in a subgroup.  (Contributed by Mario Carneiro , 14-Jan-2015)   (Proof shortened by Stefan O'Rear , 12-Sep-2015) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						submod.h ⊢  𝐻   =  ( 𝐺   ↾s   𝑌  )  
					
						submod.o ⊢  𝑂   =  ( od ‘ 𝐺  )  
					
						submod.p ⊢  𝑃   =  ( od ‘ 𝐻  )  
				
					Assertion 
					subgod ⊢   ( ( 𝑌   ∈  ( SubGrp ‘ 𝐺  )  ∧  𝐴   ∈  𝑌  )  →  ( 𝑂  ‘ 𝐴  )  =  ( 𝑃  ‘ 𝐴  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							submod.h ⊢  𝐻   =  ( 𝐺   ↾s   𝑌  )  
						
							2 
								
							 
							submod.o ⊢  𝑂   =  ( od ‘ 𝐺  )  
						
							3 
								
							 
							submod.p ⊢  𝑃   =  ( od ‘ 𝐻  )  
						
							4 
								
							 
							subgsubm ⊢  ( 𝑌   ∈  ( SubGrp ‘ 𝐺  )  →  𝑌   ∈  ( SubMnd ‘ 𝐺  ) )  
						
							5 
								1  2  3 
							 
							submod ⊢  ( ( 𝑌   ∈  ( SubMnd ‘ 𝐺  )  ∧  𝐴   ∈  𝑌  )  →  ( 𝑂  ‘ 𝐴  )  =  ( 𝑃  ‘ 𝐴  ) )  
						
							6 
								4  5 
							 
							sylan ⊢  ( ( 𝑌   ∈  ( SubGrp ‘ 𝐺  )  ∧  𝐴   ∈  𝑌  )  →  ( 𝑂  ‘ 𝐴  )  =  ( 𝑃  ‘ 𝐴  ) )