Metamath Proof Explorer


Theorem subgod

Description: The order of an element is the same in a subgroup. (Contributed by Mario Carneiro, 14-Jan-2015) (Proof shortened by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses submod.h 𝐻 = ( 𝐺s 𝑌 )
submod.o 𝑂 = ( od ‘ 𝐺 )
submod.p 𝑃 = ( od ‘ 𝐻 )
Assertion subgod ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑌 ) → ( 𝑂𝐴 ) = ( 𝑃𝐴 ) )

Proof

Step Hyp Ref Expression
1 submod.h 𝐻 = ( 𝐺s 𝑌 )
2 submod.o 𝑂 = ( od ‘ 𝐺 )
3 submod.p 𝑃 = ( od ‘ 𝐻 )
4 subgsubm ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ∈ ( SubMnd ‘ 𝐺 ) )
5 1 2 3 submod ( ( 𝑌 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝐴𝑌 ) → ( 𝑂𝐴 ) = ( 𝑃𝐴 ) )
6 4 5 sylan ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐴𝑌 ) → ( 𝑂𝐴 ) = ( 𝑃𝐴 ) )