| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgpprm | ⊢ ( 𝑃  pGrp  𝐺  →  𝑃  ∈  ℙ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 3 |  | eqid | ⊢ ( 𝐺  ↾s  𝑆 )  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 4 | 3 | subggrp | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐺  ↾s  𝑆 )  ∈  Grp ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( 𝐺  ↾s  𝑆 )  ∈  Grp ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 7 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 8 | 6 7 | ispgp | ⊢ ( 𝑃  pGrp  𝐺  ↔  ( 𝑃  ∈  ℙ  ∧  𝐺  ∈  Grp  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 9 | 8 | simp3bi | ⊢ ( 𝑃  pGrp  𝐺  →  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 11 | 6 | subgss | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 13 |  | ssralv | ⊢ ( 𝑆  ⊆  ( Base ‘ 𝐺 )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 )  →  ∀ 𝑥  ∈  𝑆 ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 )  →  ∀ 𝑥  ∈  𝑆 ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( od ‘ ( 𝐺  ↾s  𝑆 ) )  =  ( od ‘ ( 𝐺  ↾s  𝑆 ) ) | 
						
							| 16 | 3 7 15 | subgod | ⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ∈  𝑆 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ( od ‘ ( 𝐺  ↾s  𝑆 ) ) ‘ 𝑥 ) ) | 
						
							| 17 | 16 | adantll | ⊢ ( ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( ( od ‘ ( 𝐺  ↾s  𝑆 ) ) ‘ 𝑥 ) ) | 
						
							| 18 | 17 | eqeq1d | ⊢ ( ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  𝑆 )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 )  ↔  ( ( od ‘ ( 𝐺  ↾s  𝑆 ) ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  ∧  𝑥  ∈  𝑆 )  →  ( ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 )  ↔  ∃ 𝑛  ∈  ℕ0 ( ( od ‘ ( 𝐺  ↾s  𝑆 ) ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 20 | 19 | ralbidva | ⊢ ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ∀ 𝑥  ∈  𝑆 ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 )  ↔  ∀ 𝑥  ∈  𝑆 ∃ 𝑛  ∈  ℕ0 ( ( od ‘ ( 𝐺  ↾s  𝑆 ) ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 21 | 14 20 | sylibd | ⊢ ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) ∃ 𝑛  ∈  ℕ0 ( ( od ‘ 𝐺 ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 )  →  ∀ 𝑥  ∈  𝑆 ∃ 𝑛  ∈  ℕ0 ( ( od ‘ ( 𝐺  ↾s  𝑆 ) ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 22 | 10 21 | mpd | ⊢ ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ∀ 𝑥  ∈  𝑆 ∃ 𝑛  ∈  ℕ0 ( ( od ‘ ( 𝐺  ↾s  𝑆 ) ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 23 | 3 | subgbas | ⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  𝑆  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑆  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) ) | 
						
							| 25 | 22 24 | raleqtrdv | ⊢ ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  ∀ 𝑥  ∈  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) ∃ 𝑛  ∈  ℕ0 ( ( od ‘ ( 𝐺  ↾s  𝑆 ) ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ ( 𝐺  ↾s  𝑆 ) )  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) | 
						
							| 27 | 26 15 | ispgp | ⊢ ( 𝑃  pGrp  ( 𝐺  ↾s  𝑆 )  ↔  ( 𝑃  ∈  ℙ  ∧  ( 𝐺  ↾s  𝑆 )  ∈  Grp  ∧  ∀ 𝑥  ∈  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) ∃ 𝑛  ∈  ℕ0 ( ( od ‘ ( 𝐺  ↾s  𝑆 ) ) ‘ 𝑥 )  =  ( 𝑃 ↑ 𝑛 ) ) ) | 
						
							| 28 | 2 5 25 27 | syl3anbrc | ⊢ ( ( 𝑃  pGrp  𝐺  ∧  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  →  𝑃  pGrp  ( 𝐺  ↾s  𝑆 ) ) |