Metamath Proof Explorer


Theorem subgreldmiedg

Description: An element of the domain of the edge function of a subgraph is an element of the domain of the edge function of the supergraph. (Contributed by AV, 20-Nov-2020)

Ref Expression
Assertion subgreldmiedg ( ( 𝑆 SubGraph 𝐺𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 eqid ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 )
2 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
3 eqid ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 )
4 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
5 eqid ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 )
6 1 2 3 4 5 subgrprop2 ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) )
7 dmss ( ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) → dom ( iEdg ‘ 𝑆 ) ⊆ dom ( iEdg ‘ 𝐺 ) )
8 7 3ad2ant2 ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → dom ( iEdg ‘ 𝑆 ) ⊆ dom ( iEdg ‘ 𝐺 ) )
9 8 sseld ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → ( 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) )
10 6 9 syl ( 𝑆 SubGraph 𝐺 → ( 𝑋 ∈ dom ( iEdg ‘ 𝑆 ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) ) )
11 10 imp ( ( 𝑆 SubGraph 𝐺𝑋 ∈ dom ( iEdg ‘ 𝑆 ) ) → 𝑋 ∈ dom ( iEdg ‘ 𝐺 ) )