Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) |
4 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 ) |
6 |
1 2 3 4 5
|
subgrprop2 |
⊢ ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) ) |
7 |
|
funss |
⊢ ( ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) → ( Fun ( iEdg ‘ 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → ( Fun ( iEdg ‘ 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) ) |
9 |
6 8
|
syl |
⊢ ( 𝑆 SubGraph 𝐺 → ( Fun ( iEdg ‘ 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) ) |
10 |
9
|
impcom |
⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) |