Metamath Proof Explorer


Theorem subgrfun

Description: The edge function of a subgraph of a graph whose edge function is actually a function is a function. (Contributed by AV, 20-Nov-2020)

Ref Expression
Assertion subgrfun ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 eqid ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 )
2 eqid ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 )
3 eqid ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 )
4 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
5 eqid ( Edg ‘ 𝑆 ) = ( Edg ‘ 𝑆 )
6 1 2 3 4 5 subgrprop2 ( 𝑆 SubGraph 𝐺 → ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) )
7 funss ( ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) → ( Fun ( iEdg ‘ 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) )
8 7 3ad2ant2 ( ( ( Vtx ‘ 𝑆 ) ⊆ ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑆 ) ⊆ ( iEdg ‘ 𝐺 ) ∧ ( Edg ‘ 𝑆 ) ⊆ 𝒫 ( Vtx ‘ 𝑆 ) ) → ( Fun ( iEdg ‘ 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) )
9 6 8 syl ( 𝑆 SubGraph 𝐺 → ( Fun ( iEdg ‘ 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) ) )
10 9 impcom ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) )