Metamath Proof Explorer


Theorem subgruhgrfun

Description: The edge function of a subgraph of a hypergraph is a function. (Contributed by AV, 16-Nov-2020) (Proof shortened by AV, 20-Nov-2020)

Ref Expression
Assertion subgruhgrfun ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 eqid ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 )
2 1 uhgrfun ( 𝐺 ∈ UHGraph → Fun ( iEdg ‘ 𝐺 ) )
3 subgrfun ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) )
4 2 3 sylan ( ( 𝐺 ∈ UHGraph ∧ 𝑆 SubGraph 𝐺 ) → Fun ( iEdg ‘ 𝑆 ) )