| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							subgslw.1 | 
							⊢ 𝐻  =  ( 𝐺  ↾s  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							slwprm | 
							⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  →  𝑃  ∈  ℙ )  | 
						
						
							| 3 | 
							
								2
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  𝑃  ∈  ℙ )  | 
						
						
							| 4 | 
							
								
							 | 
							slwsubg | 
							⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  𝐾  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  𝐾  ⊆  𝑆 )  | 
						
						
							| 7 | 
							
								1
							 | 
							subsubg | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝐾  ∈  ( SubGrp ‘ 𝐻 )  ↔  ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ⊆  𝑆 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  ( 𝐾  ∈  ( SubGrp ‘ 𝐻 )  ↔  ( 𝐾  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ⊆  𝑆 ) ) )  | 
						
						
							| 9 | 
							
								5 6 8
							 | 
							mpbir2and | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  𝐾  ∈  ( SubGrp ‘ 𝐻 ) )  | 
						
						
							| 10 | 
							
								1
							 | 
							oveq1i | 
							⊢ ( 𝐻  ↾s  𝑥 )  =  ( ( 𝐺  ↾s  𝑆 )  ↾s  𝑥 )  | 
						
						
							| 11 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 12 | 
							
								1
							 | 
							subsubg | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  →  ( 𝑥  ∈  ( SubGrp ‘ 𝐻 )  ↔  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ⊆  𝑆 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  ( 𝑥  ∈  ( SubGrp ‘ 𝐻 )  ↔  ( 𝑥  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ⊆  𝑆 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							simplbda | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝑥  ⊆  𝑆 )  | 
						
						
							| 15 | 
							
								
							 | 
							ressabs | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝑥  ⊆  𝑆 )  →  ( ( 𝐺  ↾s  𝑆 )  ↾s  𝑥 )  =  ( 𝐺  ↾s  𝑥 ) )  | 
						
						
							| 16 | 
							
								11 14 15
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( ( 𝐺  ↾s  𝑆 )  ↾s  𝑥 )  =  ( 𝐺  ↾s  𝑥 ) )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							eqtrid | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( 𝐻  ↾s  𝑥 )  =  ( 𝐺  ↾s  𝑥 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							breq2d | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( 𝑃  pGrp  ( 𝐻  ↾s  𝑥 )  ↔  𝑃  pGrp  ( 𝐺  ↾s  𝑥 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							anbi2d | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐻  ↾s  𝑥 ) )  ↔  ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑥 ) ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝐾  ∈  ( 𝑃  pSyl  𝐺 ) )  | 
						
						
							| 21 | 
							
								13
							 | 
							simprbda | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐺  ↾s  𝑥 )  =  ( 𝐺  ↾s  𝑥 )  | 
						
						
							| 23 | 
							
								22
							 | 
							slwispgp | 
							⊢ ( ( 𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐺 ) )  →  ( ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑥 ) )  ↔  𝐾  =  𝑥 ) )  | 
						
						
							| 24 | 
							
								20 21 23
							 | 
							syl2anc | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐺  ↾s  𝑥 ) )  ↔  𝐾  =  𝑥 ) )  | 
						
						
							| 25 | 
							
								19 24
							 | 
							bitrd | 
							⊢ ( ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  ∧  𝑥  ∈  ( SubGrp ‘ 𝐻 ) )  →  ( ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐻  ↾s  𝑥 ) )  ↔  𝐾  =  𝑥 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							ralrimiva | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  ∀ 𝑥  ∈  ( SubGrp ‘ 𝐻 ) ( ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐻  ↾s  𝑥 ) )  ↔  𝐾  =  𝑥 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							isslw | 
							⊢ ( 𝐾  ∈  ( 𝑃  pSyl  𝐻 )  ↔  ( 𝑃  ∈  ℙ  ∧  𝐾  ∈  ( SubGrp ‘ 𝐻 )  ∧  ∀ 𝑥  ∈  ( SubGrp ‘ 𝐻 ) ( ( 𝐾  ⊆  𝑥  ∧  𝑃  pGrp  ( 𝐻  ↾s  𝑥 ) )  ↔  𝐾  =  𝑥 ) ) )  | 
						
						
							| 28 | 
							
								3 9 26 27
							 | 
							syl3anbrc | 
							⊢ ( ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ∧  𝐾  ∈  ( 𝑃  pSyl  𝐺 )  ∧  𝐾  ⊆  𝑆 )  →  𝐾  ∈  ( 𝑃  pSyl  𝐻 ) )  |