Description: A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | issubg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
Assertion | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubg.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
2 | 1 | issubg | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝐺 ↾s 𝑆 ) ∈ Grp ) ) |
3 | 2 | simp2bi | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ 𝐵 ) |