Step |
Hyp |
Ref |
Expression |
1 |
|
subgsubcl.p |
⊢ − = ( -g ‘ 𝐺 ) |
2 |
|
subgsub.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
3 |
|
subgsub.n |
⊢ 𝑁 = ( -g ‘ 𝐻 ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
5 |
2 4
|
ressplusg |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
7 |
|
eqidd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 = 𝑋 ) |
8 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
9 |
|
eqid |
⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) |
10 |
2 8 9
|
subginv |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑌 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) |
11 |
10
|
3adant2 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) |
12 |
6 7 11
|
oveq123d |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) = ( 𝑋 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
14 |
13
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
16 |
|
simp2 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
17 |
15 16
|
sseldd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
18 |
|
simp3 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ∈ 𝑆 ) |
19 |
15 18
|
sseldd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ∈ ( Base ‘ 𝐺 ) ) |
20 |
13 4 8 1
|
grpsubval |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑌 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
21 |
17 19 20
|
syl2anc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
22 |
2
|
subgbas |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
24 |
16 23
|
eleqtrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
25 |
18 23
|
eleqtrd |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → 𝑌 ∈ ( Base ‘ 𝐻 ) ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
27 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
28 |
26 27 9 3
|
grpsubval |
⊢ ( ( 𝑋 ∈ ( Base ‘ 𝐻 ) ∧ 𝑌 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑋 𝑁 𝑌 ) = ( 𝑋 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) ) |
29 |
24 25 28
|
syl2anc |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 𝑁 𝑌 ) = ( 𝑋 ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ 𝑌 ) ) ) |
30 |
12 21 29
|
3eqtr4d |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 𝑁 𝑌 ) ) |