Metamath Proof Explorer


Theorem subgsubcl

Description: A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypothesis subgsubcl.p = ( -g𝐺 )
Assertion subgsubcl ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 𝑌 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 subgsubcl.p = ( -g𝐺 )
2 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
3 2 subgss ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) )
4 3 3ad2ant1 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) )
5 simp2 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → 𝑋𝑆 )
6 4 5 sseldd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) )
7 simp3 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → 𝑌𝑆 )
8 4 7 sseldd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → 𝑌 ∈ ( Base ‘ 𝐺 ) )
9 eqid ( +g𝐺 ) = ( +g𝐺 )
10 eqid ( invg𝐺 ) = ( invg𝐺 )
11 2 9 10 1 grpsubval ( ( 𝑋 ∈ ( Base ‘ 𝐺 ) ∧ 𝑌 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) )
12 6 8 11 syl2anc ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) )
13 10 subginvcl ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑌𝑆 ) → ( ( invg𝐺 ) ‘ 𝑌 ) ∈ 𝑆 )
14 13 3adant2 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( ( invg𝐺 ) ‘ 𝑌 ) ∈ 𝑆 )
15 9 subgcl ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆 ∧ ( ( invg𝐺 ) ‘ 𝑌 ) ∈ 𝑆 ) → ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) ∈ 𝑆 )
16 14 15 syld3an3 ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) ∈ 𝑆 )
17 12 16 eqeltrd ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 𝑌 ) ∈ 𝑆 )