Metamath Proof Explorer


Theorem subgsubm

Description: A subgroup is a submonoid. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Assertion subgsubm ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 subgrcl ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
2 eqid ( invg𝐺 ) = ( invg𝐺 )
3 2 issubg3 ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥𝑆 ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝑆 ) ) )
4 1 3 syl ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥𝑆 ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝑆 ) ) )
5 4 ibi ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥𝑆 ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝑆 ) )
6 5 simpld ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) )