Description: A subgroup is a submonoid. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subgsubm | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 2 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 3 | 2 | issubg3 | ⊢ ( 𝐺 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 4 | 1 3 | syl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑆 ) ) ) |
| 5 | 4 | ibi | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ∈ 𝑆 ) ) |
| 6 | 5 | simpld | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) |