Step |
Hyp |
Ref |
Expression |
1 |
|
subgtgp.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
2 |
1
|
subggrp |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
3 |
2
|
adantl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Grp ) |
4 |
|
tgptmd |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd ) |
5 |
|
subgsubm |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) |
6 |
1
|
submtmd |
⊢ ( ( 𝐺 ∈ TopMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝐻 ∈ TopMnd ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ TopMnd ) |
8 |
1
|
subgbas |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
10 |
9
|
mpteq1d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑆 ↦ ( ( invg ‘ 𝐻 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐻 ) ↦ ( ( invg ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
11 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
12 |
|
eqid |
⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) |
13 |
1 11 12
|
subginv |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑥 ) ) |
14 |
13
|
adantll |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( invg ‘ 𝐻 ) ‘ 𝑥 ) ) |
15 |
14
|
mpteq2dva |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑆 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( invg ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
17 |
16 12
|
grpinvf |
⊢ ( 𝐻 ∈ Grp → ( invg ‘ 𝐻 ) : ( Base ‘ 𝐻 ) ⟶ ( Base ‘ 𝐻 ) ) |
18 |
3 17
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐻 ) : ( Base ‘ 𝐻 ) ⟶ ( Base ‘ 𝐻 ) ) |
19 |
18
|
feqmptd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐻 ) = ( 𝑥 ∈ ( Base ‘ 𝐻 ) ↦ ( ( invg ‘ 𝐻 ) ‘ 𝑥 ) ) ) |
20 |
10 15 19
|
3eqtr4rd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐻 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
21 |
|
eqid |
⊢ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) = ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) |
22 |
|
eqid |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
24 |
22 23
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
26 |
23
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
28 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
29 |
28
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 ∈ Grp ) |
30 |
23 11
|
grpinvf |
⊢ ( 𝐺 ∈ Grp → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
32 |
31
|
feqmptd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
33 |
22 11
|
tgpinv |
⊢ ( 𝐺 ∈ TopGrp → ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐺 ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
35 |
32 34
|
eqeltrrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( TopOpen ‘ 𝐺 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
36 |
21 25 27 35
|
cnmpt1res |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑥 ∈ 𝑆 ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
37 |
20 36
|
eqeltrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( TopOpen ‘ 𝐺 ) ) ) |
38 |
18
|
frnd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ran ( invg ‘ 𝐻 ) ⊆ ( Base ‘ 𝐻 ) ) |
39 |
38 9
|
sseqtrrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ran ( invg ‘ 𝐻 ) ⊆ 𝑆 ) |
40 |
|
cnrest2 |
⊢ ( ( ( TopOpen ‘ 𝐺 ) ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ran ( invg ‘ 𝐻 ) ⊆ 𝑆 ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( TopOpen ‘ 𝐺 ) ) ↔ ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) ) |
41 |
25 39 27 40
|
syl3anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( TopOpen ‘ 𝐺 ) ) ↔ ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) ) |
42 |
37 41
|
mpbid |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) |
43 |
1 22
|
resstopn |
⊢ ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) = ( TopOpen ‘ 𝐻 ) |
44 |
43 12
|
istgp |
⊢ ( 𝐻 ∈ TopGrp ↔ ( 𝐻 ∈ Grp ∧ 𝐻 ∈ TopMnd ∧ ( invg ‘ 𝐻 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) Cn ( ( TopOpen ‘ 𝐺 ) ↾t 𝑆 ) ) ) ) |
45 |
3 7 42 44
|
syl3anbrc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ TopGrp ) |