| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | 2cnd | ⊢ ( 𝐴  ∈  ℂ  →  2  ∈  ℂ ) | 
						
							| 3 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  2  ≠  0 ) | 
						
							| 5 | 1 2 4 | divcan1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 𝐴  /  2 )  ·  2 )  =  𝐴 ) | 
						
							| 6 | 5 | eqcomd | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  =  ( ( 𝐴  /  2 )  ·  2 ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  −  ( 𝐴  /  2 ) )  =  ( ( ( 𝐴  /  2 )  ·  2 )  −  ( 𝐴  /  2 ) ) ) | 
						
							| 8 |  | halfcl | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  /  2 )  ∈  ℂ ) | 
						
							| 9 | 8 2 | mulcomd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 𝐴  /  2 )  ·  2 )  =  ( 2  ·  ( 𝐴  /  2 ) ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ( 𝐴  /  2 )  ·  2 )  −  ( 𝐴  /  2 ) )  =  ( ( 2  ·  ( 𝐴  /  2 ) )  −  ( 𝐴  /  2 ) ) ) | 
						
							| 11 | 2 8 | mulsubfacd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( 𝐴  /  2 ) )  −  ( 𝐴  /  2 ) )  =  ( ( 2  −  1 )  ·  ( 𝐴  /  2 ) ) ) | 
						
							| 12 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 13 | 12 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( 2  −  1 )  =  1 ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  −  1 )  ·  ( 𝐴  /  2 ) )  =  ( 1  ·  ( 𝐴  /  2 ) ) ) | 
						
							| 15 | 8 | mullidd | ⊢ ( 𝐴  ∈  ℂ  →  ( 1  ·  ( 𝐴  /  2 ) )  =  ( 𝐴  /  2 ) ) | 
						
							| 16 | 11 14 15 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 2  ·  ( 𝐴  /  2 ) )  −  ( 𝐴  /  2 ) )  =  ( 𝐴  /  2 ) ) | 
						
							| 17 | 7 10 16 | 3eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  −  ( 𝐴  /  2 ) )  =  ( 𝐴  /  2 ) ) |