Metamath Proof Explorer


Theorem subid1

Description: Identity law for subtraction. (Contributed by NM, 9-May-2004) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion subid1 ( 𝐴 ∈ ℂ → ( 𝐴 − 0 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 addid1 ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 )
2 1 oveq1d ( 𝐴 ∈ ℂ → ( ( 𝐴 + 0 ) − 0 ) = ( 𝐴 − 0 ) )
3 0cn 0 ∈ ℂ
4 pncan ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( 𝐴 + 0 ) − 0 ) = 𝐴 )
5 3 4 mpan2 ( 𝐴 ∈ ℂ → ( ( 𝐴 + 0 ) − 0 ) = 𝐴 )
6 2 5 eqtr3d ( 𝐴 ∈ ℂ → ( 𝐴 − 0 ) = 𝐴 )