Description: Identity law for subtraction. (Contributed by NM, 9-May-2004) (Revised by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | subid1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − 0 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addid1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + 0 ) = 𝐴 ) | |
2 | 1 | oveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 + 0 ) − 0 ) = ( 𝐴 − 0 ) ) |
3 | 0cn | ⊢ 0 ∈ ℂ | |
4 | pncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ) → ( ( 𝐴 + 0 ) − 0 ) = 𝐴 ) | |
5 | 3 4 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 + 0 ) − 0 ) = 𝐴 ) |
6 | 2 5 | eqtr3d | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − 0 ) = 𝐴 ) |