Metamath Proof Explorer


Theorem subid1i

Description: Identity law for subtraction. (Contributed by NM, 29-May-1999)

Ref Expression
Hypothesis negidi.1 𝐴 ∈ ℂ
Assertion subid1i ( 𝐴 − 0 ) = 𝐴

Proof

Step Hyp Ref Expression
1 negidi.1 𝐴 ∈ ℂ
2 subid1 ( 𝐴 ∈ ℂ → ( 𝐴 − 0 ) = 𝐴 )
3 1 2 ax-mp ( 𝐴 − 0 ) = 𝐴