Metamath Proof Explorer


Theorem subislly

Description: The property of a subspace being locally A . (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Assertion subislly ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) → ( ( 𝐽t 𝐵 ) ∈ Locally 𝐴 ↔ ∀ 𝑥𝐽𝑦 ∈ ( 𝑥𝐵 ) ∃ 𝑢𝐽 ( ( 𝑢𝐵 ) ⊆ 𝑥𝑦𝑢 ∧ ( 𝐽t ( 𝑢𝐵 ) ) ∈ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 resttop ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) → ( 𝐽t 𝐵 ) ∈ Top )
2 islly ( ( 𝐽t 𝐵 ) ∈ Locally 𝐴 ↔ ( ( 𝐽t 𝐵 ) ∈ Top ∧ ∀ 𝑧 ∈ ( 𝐽t 𝐵 ) ∀ 𝑦𝑧𝑤 ∈ ( ( 𝐽t 𝐵 ) ∩ 𝒫 𝑧 ) ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ) )
3 2 baib ( ( 𝐽t 𝐵 ) ∈ Top → ( ( 𝐽t 𝐵 ) ∈ Locally 𝐴 ↔ ∀ 𝑧 ∈ ( 𝐽t 𝐵 ) ∀ 𝑦𝑧𝑤 ∈ ( ( 𝐽t 𝐵 ) ∩ 𝒫 𝑧 ) ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ) )
4 1 3 syl ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) → ( ( 𝐽t 𝐵 ) ∈ Locally 𝐴 ↔ ∀ 𝑧 ∈ ( 𝐽t 𝐵 ) ∀ 𝑦𝑧𝑤 ∈ ( ( 𝐽t 𝐵 ) ∩ 𝒫 𝑧 ) ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ) )
5 vex 𝑥 ∈ V
6 5 inex1 ( 𝑥𝐵 ) ∈ V
7 6 a1i ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑥𝐽 ) → ( 𝑥𝐵 ) ∈ V )
8 elrest ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) → ( 𝑧 ∈ ( 𝐽t 𝐵 ) ↔ ∃ 𝑥𝐽 𝑧 = ( 𝑥𝐵 ) ) )
9 simpr ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) → 𝑧 = ( 𝑥𝐵 ) )
10 9 raleqdv ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) → ( ∀ 𝑦𝑧𝑤 ∈ ( ( 𝐽t 𝐵 ) ∩ 𝒫 𝑧 ) ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ↔ ∀ 𝑦 ∈ ( 𝑥𝐵 ) ∃ 𝑤 ∈ ( ( 𝐽t 𝐵 ) ∩ 𝒫 𝑧 ) ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ) )
11 rexin ( ∃ 𝑤 ∈ ( ( 𝐽t 𝐵 ) ∩ 𝒫 𝑧 ) ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ↔ ∃ 𝑤 ∈ ( 𝐽t 𝐵 ) ( 𝑤 ∈ 𝒫 𝑧 ∧ ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ) )
12 vex 𝑢 ∈ V
13 12 inex1 ( 𝑢𝐵 ) ∈ V
14 13 a1i ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑢𝐽 ) → ( 𝑢𝐵 ) ∈ V )
15 elrest ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) → ( 𝑤 ∈ ( 𝐽t 𝐵 ) ↔ ∃ 𝑢𝐽 𝑤 = ( 𝑢𝐵 ) ) )
16 15 ad2antrr ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) → ( 𝑤 ∈ ( 𝐽t 𝐵 ) ↔ ∃ 𝑢𝐽 𝑤 = ( 𝑢𝐵 ) ) )
17 3anass ( ( 𝑤 ∈ 𝒫 𝑧𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ↔ ( 𝑤 ∈ 𝒫 𝑧 ∧ ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ) )
18 simpr ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → 𝑤 = ( 𝑢𝐵 ) )
19 simpllr ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → 𝑧 = ( 𝑥𝐵 ) )
20 18 19 sseq12d ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → ( 𝑤𝑧 ↔ ( 𝑢𝐵 ) ⊆ ( 𝑥𝐵 ) ) )
21 velpw ( 𝑤 ∈ 𝒫 𝑧𝑤𝑧 )
22 inss2 ( 𝑢𝐵 ) ⊆ 𝐵
23 22 biantru ( ( 𝑢𝐵 ) ⊆ 𝑥 ↔ ( ( 𝑢𝐵 ) ⊆ 𝑥 ∧ ( 𝑢𝐵 ) ⊆ 𝐵 ) )
24 ssin ( ( ( 𝑢𝐵 ) ⊆ 𝑥 ∧ ( 𝑢𝐵 ) ⊆ 𝐵 ) ↔ ( 𝑢𝐵 ) ⊆ ( 𝑥𝐵 ) )
25 23 24 bitri ( ( 𝑢𝐵 ) ⊆ 𝑥 ↔ ( 𝑢𝐵 ) ⊆ ( 𝑥𝐵 ) )
26 20 21 25 3bitr4g ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → ( 𝑤 ∈ 𝒫 𝑧 ↔ ( 𝑢𝐵 ) ⊆ 𝑥 ) )
27 18 eleq2d ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → ( 𝑦𝑤𝑦 ∈ ( 𝑢𝐵 ) ) )
28 simplr ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → 𝑦 ∈ ( 𝑥𝐵 ) )
29 28 elin2d ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → 𝑦𝐵 )
30 29 biantrud ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → ( 𝑦𝑢 ↔ ( 𝑦𝑢𝑦𝐵 ) ) )
31 elin ( 𝑦 ∈ ( 𝑢𝐵 ) ↔ ( 𝑦𝑢𝑦𝐵 ) )
32 30 31 bitr4di ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → ( 𝑦𝑢𝑦 ∈ ( 𝑢𝐵 ) ) )
33 27 32 bitr4d ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → ( 𝑦𝑤𝑦𝑢 ) )
34 18 oveq2d ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) = ( ( 𝐽t 𝐵 ) ↾t ( 𝑢𝐵 ) ) )
35 simp-4l ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → 𝐽 ∈ Top )
36 22 a1i ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → ( 𝑢𝐵 ) ⊆ 𝐵 )
37 simplr ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) → 𝐵𝑉 )
38 37 ad2antrr ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → 𝐵𝑉 )
39 restabs ( ( 𝐽 ∈ Top ∧ ( 𝑢𝐵 ) ⊆ 𝐵𝐵𝑉 ) → ( ( 𝐽t 𝐵 ) ↾t ( 𝑢𝐵 ) ) = ( 𝐽t ( 𝑢𝐵 ) ) )
40 35 36 38 39 syl3anc ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → ( ( 𝐽t 𝐵 ) ↾t ( 𝑢𝐵 ) ) = ( 𝐽t ( 𝑢𝐵 ) ) )
41 34 40 eqtrd ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) = ( 𝐽t ( 𝑢𝐵 ) ) )
42 41 eleq1d ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → ( ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ↔ ( 𝐽t ( 𝑢𝐵 ) ) ∈ 𝐴 ) )
43 26 33 42 3anbi123d ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → ( ( 𝑤 ∈ 𝒫 𝑧𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ↔ ( ( 𝑢𝐵 ) ⊆ 𝑥𝑦𝑢 ∧ ( 𝐽t ( 𝑢𝐵 ) ) ∈ 𝐴 ) ) )
44 17 43 bitr3id ( ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) ∧ 𝑤 = ( 𝑢𝐵 ) ) → ( ( 𝑤 ∈ 𝒫 𝑧 ∧ ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ) ↔ ( ( 𝑢𝐵 ) ⊆ 𝑥𝑦𝑢 ∧ ( 𝐽t ( 𝑢𝐵 ) ) ∈ 𝐴 ) ) )
45 14 16 44 rexxfr2d ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) → ( ∃ 𝑤 ∈ ( 𝐽t 𝐵 ) ( 𝑤 ∈ 𝒫 𝑧 ∧ ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ) ↔ ∃ 𝑢𝐽 ( ( 𝑢𝐵 ) ⊆ 𝑥𝑦𝑢 ∧ ( 𝐽t ( 𝑢𝐵 ) ) ∈ 𝐴 ) ) )
46 11 45 syl5bb ( ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) ∧ 𝑦 ∈ ( 𝑥𝐵 ) ) → ( ∃ 𝑤 ∈ ( ( 𝐽t 𝐵 ) ∩ 𝒫 𝑧 ) ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ↔ ∃ 𝑢𝐽 ( ( 𝑢𝐵 ) ⊆ 𝑥𝑦𝑢 ∧ ( 𝐽t ( 𝑢𝐵 ) ) ∈ 𝐴 ) ) )
47 46 ralbidva ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) → ( ∀ 𝑦 ∈ ( 𝑥𝐵 ) ∃ 𝑤 ∈ ( ( 𝐽t 𝐵 ) ∩ 𝒫 𝑧 ) ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ↔ ∀ 𝑦 ∈ ( 𝑥𝐵 ) ∃ 𝑢𝐽 ( ( 𝑢𝐵 ) ⊆ 𝑥𝑦𝑢 ∧ ( 𝐽t ( 𝑢𝐵 ) ) ∈ 𝐴 ) ) )
48 10 47 bitrd ( ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) ∧ 𝑧 = ( 𝑥𝐵 ) ) → ( ∀ 𝑦𝑧𝑤 ∈ ( ( 𝐽t 𝐵 ) ∩ 𝒫 𝑧 ) ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ↔ ∀ 𝑦 ∈ ( 𝑥𝐵 ) ∃ 𝑢𝐽 ( ( 𝑢𝐵 ) ⊆ 𝑥𝑦𝑢 ∧ ( 𝐽t ( 𝑢𝐵 ) ) ∈ 𝐴 ) ) )
49 7 8 48 ralxfr2d ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) → ( ∀ 𝑧 ∈ ( 𝐽t 𝐵 ) ∀ 𝑦𝑧𝑤 ∈ ( ( 𝐽t 𝐵 ) ∩ 𝒫 𝑧 ) ( 𝑦𝑤 ∧ ( ( 𝐽t 𝐵 ) ↾t 𝑤 ) ∈ 𝐴 ) ↔ ∀ 𝑥𝐽𝑦 ∈ ( 𝑥𝐵 ) ∃ 𝑢𝐽 ( ( 𝑢𝐵 ) ⊆ 𝑥𝑦𝑢 ∧ ( 𝐽t ( 𝑢𝐵 ) ) ∈ 𝐴 ) ) )
50 4 49 bitrd ( ( 𝐽 ∈ Top ∧ 𝐵𝑉 ) → ( ( 𝐽t 𝐵 ) ∈ Locally 𝐴 ↔ ∀ 𝑥𝐽𝑦 ∈ ( 𝑥𝐵 ) ∃ 𝑢𝐽 ( ( 𝑢𝐵 ) ⊆ 𝑥𝑦𝑢 ∧ ( 𝐽t ( 𝑢𝐵 ) ) ∈ 𝐴 ) ) )