Metamath Proof Explorer


Theorem suble

Description: Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005)

Ref Expression
Assertion suble ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐶 ↔ ( 𝐴𝐶 ) ≤ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 lesubadd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐶𝐴 ≤ ( 𝐶 + 𝐵 ) ) )
2 lesubadd2 ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴𝐶 ) ≤ 𝐵𝐴 ≤ ( 𝐶 + 𝐵 ) ) )
3 2 3com23 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐶 ) ≤ 𝐵𝐴 ≤ ( 𝐶 + 𝐵 ) ) )
4 1 3 bitr4d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 𝐶 ↔ ( 𝐴𝐶 ) ≤ 𝐵 ) )