Description: Swap subtrahends in an inequality. (Contributed by NM, 29-Sep-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | suble | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 𝐶 ↔ ( 𝐴 − 𝐶 ) ≤ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lesubadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 𝐶 ↔ 𝐴 ≤ ( 𝐶 + 𝐵 ) ) ) | |
2 | lesubadd2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − 𝐶 ) ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐶 + 𝐵 ) ) ) | |
3 | 2 | 3com23 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐶 ) ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐶 + 𝐵 ) ) ) |
4 | 1 3 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 𝐶 ↔ ( 𝐴 − 𝐶 ) ≤ 𝐵 ) ) |