Metamath Proof Explorer


Theorem suble0

Description: Nonpositive subtraction. (Contributed by NM, 20-Mar-2008) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion suble0 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 0 ↔ 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 0re 0 ∈ ℝ
2 suble ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 0 ↔ ( 𝐴 − 0 ) ≤ 𝐵 ) )
3 1 2 mp3an3 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 0 ↔ ( 𝐴 − 0 ) ≤ 𝐵 ) )
4 simpl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ )
5 4 recnd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ )
6 5 subid1d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 − 0 ) = 𝐴 )
7 6 breq1d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − 0 ) ≤ 𝐵𝐴𝐵 ) )
8 3 7 bitrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴𝐵 ) ≤ 0 ↔ 𝐴𝐵 ) )