Description: Nonpositive subtraction. (Contributed by NM, 20-Mar-2008) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suble0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 0 ↔ 𝐴 ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | ⊢ 0 ∈ ℝ | |
| 2 | suble | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 0 ↔ ( 𝐴 − 0 ) ≤ 𝐵 ) ) | |
| 3 | 1 2 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 0 ↔ ( 𝐴 − 0 ) ≤ 𝐵 ) ) |
| 4 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 5 | 4 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 6 | 5 | subid1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 − 0 ) = 𝐴 ) |
| 7 | 6 | breq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − 0 ) ≤ 𝐵 ↔ 𝐴 ≤ 𝐵 ) ) |
| 8 | 3 7 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 0 ↔ 𝐴 ≤ 𝐵 ) ) |