Description: Nonpositive subtraction. (Contributed by NM, 20-Mar-2008) (Proof shortened by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | suble0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 0 ↔ 𝐴 ≤ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | ⊢ 0 ∈ ℝ | |
2 | suble | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 0 ↔ ( 𝐴 − 0 ) ≤ 𝐵 ) ) | |
3 | 1 2 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 0 ↔ ( 𝐴 − 0 ) ≤ 𝐵 ) ) |
4 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
5 | 4 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
6 | 5 | subid1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 − 0 ) = 𝐴 ) |
7 | 6 | breq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − 0 ) ≤ 𝐵 ↔ 𝐴 ≤ 𝐵 ) ) |
8 | 3 7 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 − 𝐵 ) ≤ 0 ↔ 𝐴 ≤ 𝐵 ) ) |