Metamath Proof Explorer
		
		
		
		Description:  Swap subtrahends in an inequality.  (Contributed by Mario Carneiro, 27-May-2016)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | leidd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
					
						|  |  | ltnegd.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
					
						|  |  | ltadd1d.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
					
						|  |  | subled.4 | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  ≤  𝐶 ) | 
				
					|  | Assertion | subled | ⊢  ( 𝜑  →  ( 𝐴  −  𝐶 )  ≤  𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | leidd.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | ltnegd.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ ) | 
						
							| 3 |  | ltadd1d.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 4 |  | subled.4 | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  ≤  𝐶 ) | 
						
							| 5 |  | suble | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐴  −  𝐵 )  ≤  𝐶  ↔  ( 𝐴  −  𝐶 )  ≤  𝐵 ) ) | 
						
							| 6 | 1 2 3 5 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐴  −  𝐵 )  ≤  𝐶  ↔  ( 𝐴  −  𝐶 )  ≤  𝐵 ) ) | 
						
							| 7 | 4 6 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  −  𝐶 )  ≤  𝐵 ) |