Step |
Hyp |
Ref |
Expression |
1 |
|
sublevolico.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
sublevolico.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
4 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( 𝐵 − 𝐴 ) ) |
5 |
3 4
|
eqled |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( 𝐵 − 𝐴 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ≤ ( 𝐵 − 𝐴 ) ) |
7 |
|
volico |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
10 |
|
iftrue |
⊢ ( 𝐴 < 𝐵 → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = ( 𝐵 − 𝐴 ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = ( 𝐵 − 𝐴 ) ) |
12 |
9 11
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) = ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |
13 |
6 12
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) → ¬ 𝐴 < 𝐵 ) |
15 |
2 1
|
lenltd |
⊢ ( 𝜑 → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
17 |
14 16
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) → 𝐵 ≤ 𝐴 ) |
18 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) |
19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) |
20 |
18 19
|
suble0d |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) → ( ( 𝐵 − 𝐴 ) ≤ 0 ↔ 𝐵 ≤ 𝐴 ) ) |
21 |
17 20
|
mpbird |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ≤ 0 ) |
22 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
23 |
|
iffalse |
⊢ ( ¬ 𝐴 < 𝐵 → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = 0 ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = 0 ) |
25 |
22 24
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) → 0 = ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |
26 |
21 25
|
breqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |
27 |
13 26
|
pm2.61dan |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ ( vol ‘ ( 𝐴 [,) 𝐵 ) ) ) |