Metamath Proof Explorer


Theorem sublimc

Description: Subtraction of two limits. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses sublimc.f 𝐹 = ( 𝑥𝐴𝐵 )
sublimc.2 𝐺 = ( 𝑥𝐴𝐶 )
sublimc.3 𝐻 = ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) )
sublimc.4 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
sublimc.5 ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℂ )
sublimc.6 ( 𝜑𝐸 ∈ ( 𝐹 lim 𝐷 ) )
sublimc.7 ( 𝜑𝐼 ∈ ( 𝐺 lim 𝐷 ) )
Assertion sublimc ( 𝜑 → ( 𝐸𝐼 ) ∈ ( 𝐻 lim 𝐷 ) )

Proof

Step Hyp Ref Expression
1 sublimc.f 𝐹 = ( 𝑥𝐴𝐵 )
2 sublimc.2 𝐺 = ( 𝑥𝐴𝐶 )
3 sublimc.3 𝐻 = ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) )
4 sublimc.4 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
5 sublimc.5 ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℂ )
6 sublimc.6 ( 𝜑𝐸 ∈ ( 𝐹 lim 𝐷 ) )
7 sublimc.7 ( 𝜑𝐼 ∈ ( 𝐺 lim 𝐷 ) )
8 eqid ( 𝑥𝐴 ↦ - 𝐶 ) = ( 𝑥𝐴 ↦ - 𝐶 )
9 eqid ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) = ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) )
10 5 negcld ( ( 𝜑𝑥𝐴 ) → - 𝐶 ∈ ℂ )
11 2 8 5 7 neglimc ( 𝜑 → - 𝐼 ∈ ( ( 𝑥𝐴 ↦ - 𝐶 ) lim 𝐷 ) )
12 1 8 9 4 10 6 11 addlimc ( 𝜑 → ( 𝐸 + - 𝐼 ) ∈ ( ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) lim 𝐷 ) )
13 limccl ( 𝐹 lim 𝐷 ) ⊆ ℂ
14 13 6 sselid ( 𝜑𝐸 ∈ ℂ )
15 limccl ( 𝐺 lim 𝐷 ) ⊆ ℂ
16 15 7 sselid ( 𝜑𝐼 ∈ ℂ )
17 14 16 negsubd ( 𝜑 → ( 𝐸 + - 𝐼 ) = ( 𝐸𝐼 ) )
18 17 eqcomd ( 𝜑 → ( 𝐸𝐼 ) = ( 𝐸 + - 𝐼 ) )
19 4 5 negsubd ( ( 𝜑𝑥𝐴 ) → ( 𝐵 + - 𝐶 ) = ( 𝐵𝐶 ) )
20 19 eqcomd ( ( 𝜑𝑥𝐴 ) → ( 𝐵𝐶 ) = ( 𝐵 + - 𝐶 ) )
21 20 mpteq2dva ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) = ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) )
22 3 21 syl5eq ( 𝜑𝐻 = ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) )
23 22 oveq1d ( 𝜑 → ( 𝐻 lim 𝐷 ) = ( ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) lim 𝐷 ) )
24 12 18 23 3eltr4d ( 𝜑 → ( 𝐸𝐼 ) ∈ ( 𝐻 lim 𝐷 ) )