Step |
Hyp |
Ref |
Expression |
1 |
|
sublimc.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
2 |
|
sublimc.2 |
⊢ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
3 |
|
sublimc.3 |
⊢ 𝐻 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) |
4 |
|
sublimc.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
5 |
|
sublimc.5 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
6 |
|
sublimc.6 |
⊢ ( 𝜑 → 𝐸 ∈ ( 𝐹 limℂ 𝐷 ) ) |
7 |
|
sublimc.7 |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐺 limℂ 𝐷 ) ) |
8 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ - 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ - 𝐶 ) |
9 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + - 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + - 𝐶 ) ) |
10 |
5
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ∈ ℂ ) |
11 |
2 8 5 7
|
neglimc |
⊢ ( 𝜑 → - 𝐼 ∈ ( ( 𝑥 ∈ 𝐴 ↦ - 𝐶 ) limℂ 𝐷 ) ) |
12 |
1 8 9 4 10 6 11
|
addlimc |
⊢ ( 𝜑 → ( 𝐸 + - 𝐼 ) ∈ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + - 𝐶 ) ) limℂ 𝐷 ) ) |
13 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐷 ) ⊆ ℂ |
14 |
13 6
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
15 |
|
limccl |
⊢ ( 𝐺 limℂ 𝐷 ) ⊆ ℂ |
16 |
15 7
|
sselid |
⊢ ( 𝜑 → 𝐼 ∈ ℂ ) |
17 |
14 16
|
negsubd |
⊢ ( 𝜑 → ( 𝐸 + - 𝐼 ) = ( 𝐸 − 𝐼 ) ) |
18 |
17
|
eqcomd |
⊢ ( 𝜑 → ( 𝐸 − 𝐼 ) = ( 𝐸 + - 𝐼 ) ) |
19 |
4 5
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + - 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 − 𝐶 ) = ( 𝐵 + - 𝐶 ) ) |
21 |
20
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + - 𝐶 ) ) ) |
22 |
3 21
|
syl5eq |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + - 𝐶 ) ) ) |
23 |
22
|
oveq1d |
⊢ ( 𝜑 → ( 𝐻 limℂ 𝐷 ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + - 𝐶 ) ) limℂ 𝐷 ) ) |
24 |
12 18 23
|
3eltr4d |
⊢ ( 𝜑 → ( 𝐸 − 𝐼 ) ∈ ( 𝐻 limℂ 𝐷 ) ) |