Metamath Proof Explorer


Theorem subm0

Description: Submonoids have the same identity. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypotheses submmnd.h 𝐻 = ( 𝑀s 𝑆 )
subm0.z 0 = ( 0g𝑀 )
Assertion subm0 ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 0 = ( 0g𝐻 ) )

Proof

Step Hyp Ref Expression
1 submmnd.h 𝐻 = ( 𝑀s 𝑆 )
2 subm0.z 0 = ( 0g𝑀 )
3 submrcl ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝑀 ∈ Mnd )
4 1 submmnd ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝐻 ∈ Mnd )
5 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
6 5 submss ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝑆 ⊆ ( Base ‘ 𝑀 ) )
7 2 subm0cl ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 0𝑆 )
8 5 2 1 submnd0 ( ( ( 𝑀 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 0𝑆 ) ) → 0 = ( 0g𝐻 ) )
9 3 4 6 7 8 syl22anc ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 0 = ( 0g𝐻 ) )