Description: Submonoids have the same identity. (Contributed by Mario Carneiro, 7-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | submmnd.h | ⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) | |
subm0.z | ⊢ 0 = ( 0g ‘ 𝑀 ) | ||
Assertion | subm0 | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 0 = ( 0g ‘ 𝐻 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submmnd.h | ⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) | |
2 | subm0.z | ⊢ 0 = ( 0g ‘ 𝑀 ) | |
3 | submrcl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝑀 ∈ Mnd ) | |
4 | 1 | submmnd | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝐻 ∈ Mnd ) |
5 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
6 | 5 | submss | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝑆 ⊆ ( Base ‘ 𝑀 ) ) |
7 | 2 | subm0cl | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 0 ∈ 𝑆 ) |
8 | 5 2 1 | submnd0 | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 0 ∈ 𝑆 ) ) → 0 = ( 0g ‘ 𝐻 ) ) |
9 | 3 4 6 7 8 | syl22anc | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 0 = ( 0g ‘ 𝐻 ) ) |