| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subm0cl.z | ⊢  0   =  ( 0g ‘ 𝑀 ) | 
						
							| 2 |  | submrcl | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  →  𝑀  ∈  Mnd ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑀  ↾s  𝑆 )  =  ( 𝑀  ↾s  𝑆 ) | 
						
							| 5 | 3 1 4 | issubm2 | ⊢ ( 𝑀  ∈  Mnd  →  ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧   0   ∈  𝑆  ∧  ( 𝑀  ↾s  𝑆 )  ∈  Mnd ) ) ) | 
						
							| 6 | 2 5 | syl | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  →  ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧   0   ∈  𝑆  ∧  ( 𝑀  ↾s  𝑆 )  ∈  Mnd ) ) ) | 
						
							| 7 | 6 | ibi | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  →  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧   0   ∈  𝑆  ∧  ( 𝑀  ↾s  𝑆 )  ∈  Mnd ) ) | 
						
							| 8 | 7 | simp2d | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  →   0   ∈  𝑆 ) |