| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submabas.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
submabas.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
eqid |
⊢ ( 𝐷 Mat 𝑅 ) = ( 𝐷 Mat 𝑅 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ ( 𝐷 Mat 𝑅 ) ) = ( Base ‘ ( 𝐷 Mat 𝑅 ) ) |
| 6 |
1 2
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 7 |
6
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
| 8 |
|
ssfi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝐷 ⊆ 𝑁 ) → 𝐷 ∈ Fin ) |
| 9 |
7 8
|
sylan |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁 ) → 𝐷 ∈ Fin ) |
| 10 |
6
|
simprd |
⊢ ( 𝑀 ∈ 𝐵 → 𝑅 ∈ V ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁 ) → 𝑅 ∈ V ) |
| 12 |
|
ssel |
⊢ ( 𝐷 ⊆ 𝑁 → ( 𝑖 ∈ 𝐷 → 𝑖 ∈ 𝑁 ) ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁 ) → ( 𝑖 ∈ 𝐷 → 𝑖 ∈ 𝑁 ) ) |
| 14 |
13
|
imp |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁 ) ∧ 𝑖 ∈ 𝐷 ) → 𝑖 ∈ 𝑁 ) |
| 15 |
14
|
3adant3 |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁 ) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) → 𝑖 ∈ 𝑁 ) |
| 16 |
|
ssel |
⊢ ( 𝐷 ⊆ 𝑁 → ( 𝑗 ∈ 𝐷 → 𝑗 ∈ 𝑁 ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁 ) → ( 𝑗 ∈ 𝐷 → 𝑗 ∈ 𝑁 ) ) |
| 18 |
17
|
imp |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁 ) ∧ 𝑗 ∈ 𝐷 ) → 𝑗 ∈ 𝑁 ) |
| 19 |
18
|
3adant2 |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁 ) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) → 𝑗 ∈ 𝑁 ) |
| 20 |
2
|
eleq2i |
⊢ ( 𝑀 ∈ 𝐵 ↔ 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 21 |
20
|
biimpi |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 23 |
22
|
3ad2ant1 |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁 ) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 24 |
1 4
|
matecl |
⊢ ( ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑖 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 25 |
15 19 23 24
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁 ) ∧ 𝑖 ∈ 𝐷 ∧ 𝑗 ∈ 𝐷 ) → ( 𝑖 𝑀 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
3 4 5 9 11 25
|
matbas2d |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐷 ⊆ 𝑁 ) → ( 𝑖 ∈ 𝐷 , 𝑗 ∈ 𝐷 ↦ ( 𝑖 𝑀 𝑗 ) ) ∈ ( Base ‘ ( 𝐷 Mat 𝑅 ) ) ) |