Step |
Hyp |
Ref |
Expression |
1 |
|
submacs.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
4 |
1 2 3
|
issubm |
⊢ ( 𝐺 ∈ Mnd → ( 𝑠 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ) |
5 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 𝐵 ↔ 𝑠 ⊆ 𝐵 ) |
6 |
5
|
anbi1i |
⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ) |
7 |
|
3anass |
⊢ ( ( 𝑠 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ) |
8 |
6 7
|
bitr4i |
⊢ ( ( 𝑠 ∈ 𝒫 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ↔ ( 𝑠 ⊆ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) |
9 |
4 8
|
bitr4di |
⊢ ( 𝐺 ∈ Mnd → ( 𝑠 ∈ ( SubMnd ‘ 𝐺 ) ↔ ( 𝑠 ∈ 𝒫 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) ) ) |
10 |
9
|
abbi2dv |
⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) = { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) } ) |
11 |
|
df-rab |
⊢ { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) } = { 𝑠 ∣ ( 𝑠 ∈ 𝒫 𝐵 ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) ) } |
12 |
10 11
|
eqtr4di |
⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) } ) |
13 |
|
inrab |
⊢ ( { 𝑠 ∈ 𝒫 𝐵 ∣ ( 0g ‘ 𝐺 ) ∈ 𝑠 } ∩ { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) } |
14 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
15 |
|
mreacs |
⊢ ( 𝐵 ∈ V → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) |
16 |
14 15
|
mp1i |
⊢ ( 𝐺 ∈ Mnd → ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ) |
17 |
1 2
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
18 |
|
acsfn0 |
⊢ ( ( 𝐵 ∈ V ∧ ( 0g ‘ 𝐺 ) ∈ 𝐵 ) → { 𝑠 ∈ 𝒫 𝐵 ∣ ( 0g ‘ 𝐺 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) |
19 |
14 17 18
|
sylancr |
⊢ ( 𝐺 ∈ Mnd → { 𝑠 ∈ 𝒫 𝐵 ∣ ( 0g ‘ 𝐺 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) |
20 |
1 3
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
21 |
20
|
3expb |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
22 |
21
|
ralrimivva |
⊢ ( 𝐺 ∈ Mnd → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
23 |
|
acsfn2 |
⊢ ( ( 𝐵 ∈ V ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) → { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) |
24 |
14 22 23
|
sylancr |
⊢ ( 𝐺 ∈ Mnd → { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) |
25 |
|
mreincl |
⊢ ( ( ( ACS ‘ 𝐵 ) ∈ ( Moore ‘ 𝒫 𝐵 ) ∧ { 𝑠 ∈ 𝒫 𝐵 ∣ ( 0g ‘ 𝐺 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ∧ { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ∈ ( ACS ‘ 𝐵 ) ) → ( { 𝑠 ∈ 𝒫 𝐵 ∣ ( 0g ‘ 𝐺 ) ∈ 𝑠 } ∩ { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ) ∈ ( ACS ‘ 𝐵 ) ) |
26 |
16 19 24 25
|
syl3anc |
⊢ ( 𝐺 ∈ Mnd → ( { 𝑠 ∈ 𝒫 𝐵 ∣ ( 0g ‘ 𝐺 ) ∈ 𝑠 } ∩ { 𝑠 ∈ 𝒫 𝐵 ∣ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 } ) ∈ ( ACS ‘ 𝐵 ) ) |
27 |
13 26
|
eqeltrrid |
⊢ ( 𝐺 ∈ Mnd → { 𝑠 ∈ 𝒫 𝐵 ∣ ( ( 0g ‘ 𝐺 ) ∈ 𝑠 ∧ ∀ 𝑥 ∈ 𝑠 ∀ 𝑦 ∈ 𝑠 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝑠 ) } ∈ ( ACS ‘ 𝐵 ) ) |
28 |
12 27
|
eqeltrd |
⊢ ( 𝐺 ∈ Mnd → ( SubMnd ‘ 𝐺 ) ∈ ( ACS ‘ 𝐵 ) ) |