Step |
Hyp |
Ref |
Expression |
1 |
|
submafval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
submafval.q |
⊢ 𝑄 = ( 𝑁 subMat 𝑅 ) |
3 |
|
submafval.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
4 |
1 3
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
5 |
4
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
6 |
|
mpoexga |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) ∈ V ) |
7 |
5 5 6
|
syl2anc |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) ∈ V ) |
8 |
|
oveq |
⊢ ( 𝑚 = 𝑀 → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑀 𝑗 ) ) |
9 |
8
|
mpoeq3dv |
⊢ ( 𝑚 = 𝑀 → ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) |
10 |
9
|
mpoeq3dv |
⊢ ( 𝑚 = 𝑀 → ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) ) |
11 |
1 2 3
|
submafval |
⊢ 𝑄 = ( 𝑚 ∈ 𝐵 ↦ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) ) |
12 |
10 11
|
fvmptg |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) ∈ V ) → ( 𝑄 ‘ 𝑀 ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) ) |
13 |
7 12
|
mpdan |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑄 ‘ 𝑀 ) = ( 𝑘 ∈ 𝑁 , 𝑙 ∈ 𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) ) |