Metamath Proof Explorer


Theorem submaval0

Description: Second substitution for a submatrix. (Contributed by AV, 28-Dec-2018)

Ref Expression
Hypotheses submafval.a 𝐴 = ( 𝑁 Mat 𝑅 )
submafval.q 𝑄 = ( 𝑁 subMat 𝑅 )
submafval.b 𝐵 = ( Base ‘ 𝐴 )
Assertion submaval0 ( 𝑀𝐵 → ( 𝑄𝑀 ) = ( 𝑘𝑁 , 𝑙𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) )

Proof

Step Hyp Ref Expression
1 submafval.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 submafval.q 𝑄 = ( 𝑁 subMat 𝑅 )
3 submafval.b 𝐵 = ( Base ‘ 𝐴 )
4 1 3 matrcl ( 𝑀𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) )
5 4 simpld ( 𝑀𝐵𝑁 ∈ Fin )
6 mpoexga ( ( 𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ) → ( 𝑘𝑁 , 𝑙𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) ∈ V )
7 5 5 6 syl2anc ( 𝑀𝐵 → ( 𝑘𝑁 , 𝑙𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) ∈ V )
8 oveq ( 𝑚 = 𝑀 → ( 𝑖 𝑚 𝑗 ) = ( 𝑖 𝑀 𝑗 ) )
9 8 mpoeq3dv ( 𝑚 = 𝑀 → ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) = ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) )
10 9 mpoeq3dv ( 𝑚 = 𝑀 → ( 𝑘𝑁 , 𝑙𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) = ( 𝑘𝑁 , 𝑙𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) )
11 1 2 3 submafval 𝑄 = ( 𝑚𝐵 ↦ ( 𝑘𝑁 , 𝑙𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑚 𝑗 ) ) ) )
12 10 11 fvmptg ( ( 𝑀𝐵 ∧ ( 𝑘𝑁 , 𝑙𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) ∈ V ) → ( 𝑄𝑀 ) = ( 𝑘𝑁 , 𝑙𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) )
13 7 12 mpdan ( 𝑀𝐵 → ( 𝑄𝑀 ) = ( 𝑘𝑁 , 𝑙𝑁 ↦ ( 𝑖 ∈ ( 𝑁 ∖ { 𝑘 } ) , 𝑗 ∈ ( 𝑁 ∖ { 𝑙 } ) ↦ ( 𝑖 𝑀 𝑗 ) ) ) )