Metamath Proof Explorer


Theorem submcl

Description: Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypothesis submcl.p + = ( +g𝑀 )
Assertion submcl ( ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 submcl.p + = ( +g𝑀 )
2 submrcl ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝑀 ∈ Mnd )
3 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
4 eqid ( 0g𝑀 ) = ( 0g𝑀 )
5 3 4 1 issubm ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) )
6 2 5 syl ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) ) )
7 6 ibi ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆 ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) )
8 7 simp3d ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 )
9 ovrspc2v ( ( ( 𝑋𝑆𝑌𝑆 ) ∧ ∀ 𝑥𝑆𝑦𝑆 ( 𝑥 + 𝑦 ) ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )
10 8 9 sylan2 ( ( ( 𝑋𝑆𝑌𝑆 ) ∧ 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )
11 10 ancoms ( ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ∧ ( 𝑋𝑆𝑌𝑆 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )
12 11 3impb ( ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ∧ 𝑋𝑆𝑌𝑆 ) → ( 𝑋 + 𝑌 ) ∈ 𝑆 )