Description: A submonoid of a commutative monoid is also commutative. (Contributed by Mario Carneiro, 24-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | subgabl.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
Assertion | submcmn | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝐻 ∈ CMnd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgabl.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) | |
2 | 1 | submmnd | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐻 ∈ Mnd ) |
3 | 1 | subcmn | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd ) → 𝐻 ∈ CMnd ) |
4 | 2 3 | sylan2 | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝐻 ∈ CMnd ) |