| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subgabl.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
| 2 |
|
submcmn2.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 3 |
1
|
submbas |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
| 4 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 5 |
1 4
|
ressplusg |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
| 6 |
5
|
oveqd |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
| 7 |
5
|
oveqd |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) |
| 8 |
6 7
|
eqeq12d |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 9 |
3 8
|
raleqbidv |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 10 |
3 9
|
raleqbidv |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 12 |
11
|
submss |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 13 |
11 4 2
|
sscntz |
⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 14 |
12 12 13
|
syl2anc |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
| 15 |
1
|
submmnd |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐻 ∈ Mnd ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 17 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 18 |
16 17
|
iscmn |
⊢ ( 𝐻 ∈ CMnd ↔ ( 𝐻 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 19 |
18
|
baib |
⊢ ( 𝐻 ∈ Mnd → ( 𝐻 ∈ CMnd ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 20 |
15 19
|
syl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐻 ∈ CMnd ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
| 21 |
10 14 20
|
3bitr4rd |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐻 ∈ CMnd ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) |