| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subgabl.h | ⊢ 𝐻  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 2 |  | submcmn2.z | ⊢ 𝑍  =  ( Cntz ‘ 𝐺 ) | 
						
							| 3 | 1 | submbas | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 4 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 5 | 1 4 | ressplusg | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐻 ) ) | 
						
							| 6 | 5 | oveqd | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) | 
						
							| 7 | 5 | oveqd | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  =  ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) | 
						
							| 8 | 6 7 | eqeq12d | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ↔  ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) | 
						
							| 9 | 3 8 | raleqbidv | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( ∀ 𝑦  ∈  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) | 
						
							| 10 | 3 9 | raleqbidv | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ∀ 𝑦  ∈  ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 12 | 11 | submss | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 13 | 11 4 2 | sscntz | ⊢ ( ( 𝑆  ⊆  ( Base ‘ 𝐺 )  ∧  𝑆  ⊆  ( Base ‘ 𝐺 ) )  →  ( 𝑆  ⊆  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 14 | 12 12 13 | syl2anc | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( 𝑆  ⊆  ( 𝑍 ‘ 𝑆 )  ↔  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) | 
						
							| 15 | 1 | submmnd | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  𝐻  ∈  Mnd ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 17 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 18 | 16 17 | iscmn | ⊢ ( 𝐻  ∈  CMnd  ↔  ( 𝐻  ∈  Mnd  ∧  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ∀ 𝑦  ∈  ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) | 
						
							| 19 | 18 | baib | ⊢ ( 𝐻  ∈  Mnd  →  ( 𝐻  ∈  CMnd  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ∀ 𝑦  ∈  ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) | 
						
							| 20 | 15 19 | syl | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( 𝐻  ∈  CMnd  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐻 ) ∀ 𝑦  ∈  ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 )  =  ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) | 
						
							| 21 | 10 14 20 | 3bitr4rd | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( 𝐻  ∈  CMnd  ↔  𝑆  ⊆  ( 𝑍 ‘ 𝑆 ) ) ) |