Step |
Hyp |
Ref |
Expression |
1 |
|
subgabl.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
2 |
|
submcmn2.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
3 |
1
|
submbas |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
4 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
5 |
1 4
|
ressplusg |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
6 |
5
|
oveqd |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) ) |
7 |
5
|
oveqd |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
9 |
3 8
|
raleqbidv |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
10 |
3 9
|
raleqbidv |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
12 |
11
|
submss |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
13 |
11 4 2
|
sscntz |
⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
14 |
12 12 13
|
syl2anc |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) ) ) |
15 |
1
|
submmnd |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝐻 ∈ Mnd ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
17 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
18 |
16 17
|
iscmn |
⊢ ( 𝐻 ∈ CMnd ↔ ( 𝐻 ∈ Mnd ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
19 |
18
|
baib |
⊢ ( 𝐻 ∈ Mnd → ( 𝐻 ∈ CMnd ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
20 |
15 19
|
syl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐻 ∈ CMnd ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( +g ‘ 𝐻 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝐻 ) 𝑥 ) ) ) |
21 |
10 14 20
|
3bitr4rd |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐻 ∈ CMnd ↔ 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) |