| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							submgmcl.p | 
							⊢  +   =  ( +g ‘ 𝑀 )  | 
						
						
							| 2 | 
							
								
							 | 
							submgmrcl | 
							⊢ ( 𝑆  ∈  ( SubMgm ‘ 𝑀 )  →  𝑀  ∈  Mgm )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 )  | 
						
						
							| 4 | 
							
								3 1
							 | 
							issubmgm | 
							⊢ ( 𝑀  ∈  Mgm  →  ( 𝑆  ∈  ( SubMgm ‘ 𝑀 )  ↔  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 ) ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							syl | 
							⊢ ( 𝑆  ∈  ( SubMgm ‘ 𝑀 )  →  ( 𝑆  ∈  ( SubMgm ‘ 𝑀 )  ↔  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							ibi | 
							⊢ ( 𝑆  ∈  ( SubMgm ‘ 𝑀 )  →  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							simprd | 
							⊢ ( 𝑆  ∈  ( SubMgm ‘ 𝑀 )  →  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  | 
						
						
							| 8 | 
							
								
							 | 
							ovrspc2v | 
							⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆 )  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑆 ( 𝑥  +  𝑦 )  ∈  𝑆 )  →  ( 𝑋  +  𝑌 )  ∈  𝑆 )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylan2 | 
							⊢ ( ( ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆 )  ∧  𝑆  ∈  ( SubMgm ‘ 𝑀 ) )  →  ( 𝑋  +  𝑌 )  ∈  𝑆 )  | 
						
						
							| 10 | 
							
								9
							 | 
							ancoms | 
							⊢ ( ( 𝑆  ∈  ( SubMgm ‘ 𝑀 )  ∧  ( 𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆 ) )  →  ( 𝑋  +  𝑌 )  ∈  𝑆 )  | 
						
						
							| 11 | 
							
								10
							 | 
							3impb | 
							⊢ ( ( 𝑆  ∈  ( SubMgm ‘ 𝑀 )  ∧  𝑋  ∈  𝑆  ∧  𝑌  ∈  𝑆 )  →  ( 𝑋  +  𝑌 )  ∈  𝑆 )  |