Description: Submagmas are themselves magmas under the given operation. (Contributed by AV, 26-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submgmmgm.h | ⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) | |
| Assertion | submgmmgm | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝐻 ∈ Mgm ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | submgmmgm.h | ⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) | |
| 2 | submgmrcl | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝑀 ∈ Mgm ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 4 | 3 1 | issubmgm2 | ⊢ ( 𝑀 ∈ Mgm → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝐻 ∈ Mgm ) ) ) | 
| 5 | 2 4 | syl | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝐻 ∈ Mgm ) ) ) | 
| 6 | 5 | ibi | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ 𝐻 ∈ Mgm ) ) | 
| 7 | 6 | simprd | ⊢ ( 𝑆 ∈ ( SubMgm ‘ 𝑀 ) → 𝐻 ∈ Mgm ) |