Description: Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | submss.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
Assertion | submid | ⊢ ( 𝑀 ∈ Mnd → 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submss.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
2 | ssidd | ⊢ ( 𝑀 ∈ Mnd → 𝐵 ⊆ 𝐵 ) | |
3 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
4 | 1 3 | mndidcl | ⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
5 | 1 | ressid | ⊢ ( 𝑀 ∈ Mnd → ( 𝑀 ↾s 𝐵 ) = 𝑀 ) |
6 | id | ⊢ ( 𝑀 ∈ Mnd → 𝑀 ∈ Mnd ) | |
7 | 5 6 | eqeltrd | ⊢ ( 𝑀 ∈ Mnd → ( 𝑀 ↾s 𝐵 ) ∈ Mnd ) |
8 | eqid | ⊢ ( 𝑀 ↾s 𝐵 ) = ( 𝑀 ↾s 𝐵 ) | |
9 | 1 3 8 | issubm2 | ⊢ ( 𝑀 ∈ Mnd → ( 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝐵 ⊆ 𝐵 ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ( 𝑀 ↾s 𝐵 ) ∈ Mnd ) ) ) |
10 | 2 4 7 9 | mpbir3and | ⊢ ( 𝑀 ∈ Mnd → 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) |