Description: Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | submss.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| Assertion | submid | ⊢ ( 𝑀 ∈ Mnd → 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submss.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | ssidd | ⊢ ( 𝑀 ∈ Mnd → 𝐵 ⊆ 𝐵 ) | |
| 3 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 4 | 1 3 | mndidcl | ⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 5 | 1 | ressid | ⊢ ( 𝑀 ∈ Mnd → ( 𝑀 ↾s 𝐵 ) = 𝑀 ) |
| 6 | id | ⊢ ( 𝑀 ∈ Mnd → 𝑀 ∈ Mnd ) | |
| 7 | 5 6 | eqeltrd | ⊢ ( 𝑀 ∈ Mnd → ( 𝑀 ↾s 𝐵 ) ∈ Mnd ) |
| 8 | eqid | ⊢ ( 𝑀 ↾s 𝐵 ) = ( 𝑀 ↾s 𝐵 ) | |
| 9 | 1 3 8 | issubm2 | ⊢ ( 𝑀 ∈ Mnd → ( 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝐵 ⊆ 𝐵 ∧ ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ( 𝑀 ↾s 𝐵 ) ∈ Mnd ) ) ) |
| 10 | 2 4 7 9 | mpbir3and | ⊢ ( 𝑀 ∈ Mnd → 𝐵 ∈ ( SubMnd ‘ 𝑀 ) ) |