Step |
Hyp |
Ref |
Expression |
1 |
|
submmnd.h |
⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) |
2 |
|
submrcl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝑀 ∈ Mnd ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
5 |
3 4 1
|
issubm2 |
⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ 𝐻 ∈ Mnd ) ) ) |
6 |
2 5
|
syl |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ 𝐻 ∈ Mnd ) ) ) |
7 |
6
|
ibi |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g ‘ 𝑀 ) ∈ 𝑆 ∧ 𝐻 ∈ Mnd ) ) |
8 |
7
|
simp3d |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝐻 ∈ Mnd ) |