Metamath Proof Explorer


Theorem submmnd

Description: Submonoids are themselves monoids under the given operation. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypothesis submmnd.h 𝐻 = ( 𝑀s 𝑆 )
Assertion submmnd ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝐻 ∈ Mnd )

Proof

Step Hyp Ref Expression
1 submmnd.h 𝐻 = ( 𝑀s 𝑆 )
2 submrcl ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝑀 ∈ Mnd )
3 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
4 eqid ( 0g𝑀 ) = ( 0g𝑀 )
5 3 4 1 issubm2 ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆𝐻 ∈ Mnd ) ) )
6 2 5 syl ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆𝐻 ∈ Mnd ) ) )
7 6 ibi ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → ( 𝑆 ⊆ ( Base ‘ 𝑀 ) ∧ ( 0g𝑀 ) ∈ 𝑆𝐻 ∈ Mnd ) )
8 7 simp3d ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝐻 ∈ Mnd )