| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							submmnd.h | 
							⊢ 𝐻  =  ( 𝑀  ↾s  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							submrcl | 
							⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  →  𝑀  ∈  Mnd )  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑀 )  =  ( Base ‘ 𝑀 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝑀 )  =  ( 0g ‘ 𝑀 )  | 
						
						
							| 5 | 
							
								3 4 1
							 | 
							issubm2 | 
							⊢ ( 𝑀  ∈  Mnd  →  ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝑆  ∧  𝐻  ∈  Mnd ) ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							syl | 
							⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  →  ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  ↔  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝑆  ∧  𝐻  ∈  Mnd ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ibi | 
							⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  →  ( 𝑆  ⊆  ( Base ‘ 𝑀 )  ∧  ( 0g ‘ 𝑀 )  ∈  𝑆  ∧  𝐻  ∈  Mnd ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							simp3d | 
							⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝑀 )  →  𝐻  ∈  Mnd )  |