| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submmulgcl.t | ⊢  ∙   =  ( .g ‘ 𝐺 ) | 
						
							| 2 |  | submmulg.h | ⊢ 𝐻  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 3 |  | submmulg.t | ⊢  ·   =  ( .g ‘ 𝐻 ) | 
						
							| 4 |  | simpl1 | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  ∈  ℕ )  →  𝑆  ∈  ( SubMnd ‘ 𝐺 ) ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 6 | 2 5 | ressplusg | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐻 ) ) | 
						
							| 7 | 4 6 | syl | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  ∈  ℕ )  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐻 ) ) | 
						
							| 8 | 7 | seqeq2d | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  ∈  ℕ )  →  seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) )  =  seq 1 ( ( +g ‘ 𝐻 ) ,  ( ℕ  ×  { 𝑋 } ) ) ) | 
						
							| 9 | 8 | fveq1d | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  ∈  ℕ )  →  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 )  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℕ ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 12 | 11 | submss | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 14 |  | simp3 | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  →  𝑋  ∈  𝑆 ) | 
						
							| 15 | 13 14 | sseldd | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  →  𝑋  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  ∈  ℕ )  →  𝑋  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 17 |  | eqid | ⊢ seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) )  =  seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) | 
						
							| 18 | 11 5 1 17 | mulgnn | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑁  ∙  𝑋 )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 ) ) | 
						
							| 19 | 10 16 18 | syl2anc | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  ∙  𝑋 )  =  ( seq 1 ( ( +g ‘ 𝐺 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 ) ) | 
						
							| 20 | 2 | submbas | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 22 | 14 21 | eleqtrd | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  →  𝑋  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  ∈  ℕ )  →  𝑋  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 24 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 25 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 26 |  | eqid | ⊢ seq 1 ( ( +g ‘ 𝐻 ) ,  ( ℕ  ×  { 𝑋 } ) )  =  seq 1 ( ( +g ‘ 𝐻 ) ,  ( ℕ  ×  { 𝑋 } ) ) | 
						
							| 27 | 24 25 3 26 | mulgnn | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑋  ∈  ( Base ‘ 𝐻 ) )  →  ( 𝑁  ·  𝑋 )  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 ) ) | 
						
							| 28 | 10 23 27 | syl2anc | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  ·  𝑋 )  =  ( seq 1 ( ( +g ‘ 𝐻 ) ,  ( ℕ  ×  { 𝑋 } ) ) ‘ 𝑁 ) ) | 
						
							| 29 | 9 19 28 | 3eqtr4d | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  ∈  ℕ )  →  ( 𝑁  ∙  𝑋 )  =  ( 𝑁  ·  𝑋 ) ) | 
						
							| 30 |  | simpl1 | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  =  0 )  →  𝑆  ∈  ( SubMnd ‘ 𝐺 ) ) | 
						
							| 31 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 32 | 2 31 | subm0 | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 33 | 30 32 | syl | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  =  0 )  →  ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 34 | 15 | adantr | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  =  0 )  →  𝑋  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 35 | 11 31 1 | mulg0 | ⊢ ( 𝑋  ∈  ( Base ‘ 𝐺 )  →  ( 0  ∙  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  =  0 )  →  ( 0  ∙  𝑋 )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 37 | 22 | adantr | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  =  0 )  →  𝑋  ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 38 |  | eqid | ⊢ ( 0g ‘ 𝐻 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 39 | 24 38 3 | mulg0 | ⊢ ( 𝑋  ∈  ( Base ‘ 𝐻 )  →  ( 0  ·  𝑋 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 40 | 37 39 | syl | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  =  0 )  →  ( 0  ·  𝑋 )  =  ( 0g ‘ 𝐻 ) ) | 
						
							| 41 | 33 36 40 | 3eqtr4d | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  =  0 )  →  ( 0  ∙  𝑋 )  =  ( 0  ·  𝑋 ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  =  0 )  →  𝑁  =  0 ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  =  0 )  →  ( 𝑁  ∙  𝑋 )  =  ( 0  ∙  𝑋 ) ) | 
						
							| 44 | 42 | oveq1d | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  =  0 )  →  ( 𝑁  ·  𝑋 )  =  ( 0  ·  𝑋 ) ) | 
						
							| 45 | 41 43 44 | 3eqtr4d | ⊢ ( ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  ∧  𝑁  =  0 )  →  ( 𝑁  ∙  𝑋 )  =  ( 𝑁  ·  𝑋 ) ) | 
						
							| 46 |  | simp2 | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 47 |  | elnn0 | ⊢ ( 𝑁  ∈  ℕ0  ↔  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 48 | 46 47 | sylib | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  →  ( 𝑁  ∈  ℕ  ∨  𝑁  =  0 ) ) | 
						
							| 49 | 29 45 48 | mpjaodan | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  𝑁  ∈  ℕ0  ∧  𝑋  ∈  𝑆 )  →  ( 𝑁  ∙  𝑋 )  =  ( 𝑁  ·  𝑋 ) ) |