Step |
Hyp |
Ref |
Expression |
1 |
|
submmulgcl.t |
⊢ ∙ = ( .g ‘ 𝐺 ) |
2 |
|
submmulg.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
3 |
|
submmulg.t |
⊢ · = ( .g ‘ 𝐻 ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
6 |
2 5
|
ressplusg |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
7 |
4 6
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
8 |
7
|
seqeq2d |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ) |
9 |
8
|
fveq1d |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
10 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
12 |
11
|
submss |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
14 |
|
simp3 |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) |
15 |
13 14
|
sseldd |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
17 |
|
eqid |
⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) |
18 |
11 5 1 17
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑁 ∙ 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
19 |
10 16 18
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∙ 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
20 |
2
|
submbas |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
22 |
14 21
|
eleqtrd |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
25 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
26 |
|
eqid |
⊢ seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) |
27 |
24 25 3 26
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
28 |
10 23 27
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( ( +g ‘ 𝐻 ) , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
29 |
9 19 28
|
3eqtr4d |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∙ 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
30 |
|
simpl1 |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) |
31 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
32 |
2 31
|
subm0 |
⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
33 |
30 32
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐻 ) ) |
34 |
15
|
adantr |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → 𝑋 ∈ ( Base ‘ 𝐺 ) ) |
35 |
11 31 1
|
mulg0 |
⊢ ( 𝑋 ∈ ( Base ‘ 𝐺 ) → ( 0 ∙ 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
36 |
34 35
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 0 ∙ 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
37 |
22
|
adantr |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
38 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
39 |
24 38 3
|
mulg0 |
⊢ ( 𝑋 ∈ ( Base ‘ 𝐻 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐻 ) ) |
40 |
37 39
|
syl |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐻 ) ) |
41 |
33 36 40
|
3eqtr4d |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 0 ∙ 𝑋 ) = ( 0 · 𝑋 ) ) |
42 |
|
simpr |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
43 |
42
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 𝑁 ∙ 𝑋 ) = ( 0 ∙ 𝑋 ) ) |
44 |
42
|
oveq1d |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) |
45 |
41 43 44
|
3eqtr4d |
⊢ ( ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑁 = 0 ) → ( 𝑁 ∙ 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
46 |
|
simp2 |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → 𝑁 ∈ ℕ0 ) |
47 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
48 |
46 47
|
sylib |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
49 |
29 45 48
|
mpjaodan |
⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 ∙ 𝑋 ) = ( 𝑁 · 𝑋 ) ) |