| Step | Hyp | Ref | Expression | 
						
							| 1 |  | submnd0.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | submnd0.z | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | submnd0.h | ⊢ 𝐻  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐻 )  =  ( Base ‘ 𝐻 ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝐻 )  =  ( 0g ‘ 𝐻 ) | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝐻 )  =  ( +g ‘ 𝐻 ) | 
						
							| 7 |  | simprr | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  →   0   ∈  𝑆 ) | 
						
							| 8 | 3 1 | ressbas2 | ⊢ ( 𝑆  ⊆  𝐵  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 9 | 8 | ad2antrl | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  →  𝑆  =  ( Base ‘ 𝐻 ) ) | 
						
							| 10 | 7 9 | eleqtrd | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  →   0   ∈  ( Base ‘ 𝐻 ) ) | 
						
							| 11 |  | fvex | ⊢ ( Base ‘ 𝐻 )  ∈  V | 
						
							| 12 | 9 11 | eqeltrdi | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  →  𝑆  ∈  V ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐻 ) )  →  𝑆  ∈  V ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 15 | 3 14 | ressplusg | ⊢ ( 𝑆  ∈  V  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐻 ) ) | 
						
							| 16 | 13 15 | syl | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐻 ) )  →  ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐻 ) ) | 
						
							| 17 | 16 | oveqd | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐻 ) )  →  (  0  ( +g ‘ 𝐺 ) 𝑥 )  =  (  0  ( +g ‘ 𝐻 ) 𝑥 ) ) | 
						
							| 18 |  | simpll | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  →  𝐺  ∈  Mnd ) | 
						
							| 19 | 3 1 | ressbasss | ⊢ ( Base ‘ 𝐻 )  ⊆  𝐵 | 
						
							| 20 | 19 | sseli | ⊢ ( 𝑥  ∈  ( Base ‘ 𝐻 )  →  𝑥  ∈  𝐵 ) | 
						
							| 21 | 1 14 2 | mndlid | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑥  ∈  𝐵 )  →  (  0  ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥 ) | 
						
							| 22 | 18 20 21 | syl2an | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐻 ) )  →  (  0  ( +g ‘ 𝐺 ) 𝑥 )  =  𝑥 ) | 
						
							| 23 | 17 22 | eqtr3d | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐻 ) )  →  (  0  ( +g ‘ 𝐻 ) 𝑥 )  =  𝑥 ) | 
						
							| 24 | 16 | oveqd | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐻 ) )  →  ( 𝑥 ( +g ‘ 𝐺 )  0  )  =  ( 𝑥 ( +g ‘ 𝐻 )  0  ) ) | 
						
							| 25 | 1 14 2 | mndrid | ⊢ ( ( 𝐺  ∈  Mnd  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥 ( +g ‘ 𝐺 )  0  )  =  𝑥 ) | 
						
							| 26 | 18 20 25 | syl2an | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐻 ) )  →  ( 𝑥 ( +g ‘ 𝐺 )  0  )  =  𝑥 ) | 
						
							| 27 | 24 26 | eqtr3d | ⊢ ( ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐻 ) )  →  ( 𝑥 ( +g ‘ 𝐻 )  0  )  =  𝑥 ) | 
						
							| 28 | 4 5 6 10 23 27 | ismgmid2 | ⊢ ( ( ( 𝐺  ∈  Mnd  ∧  𝐻  ∈  Mnd )  ∧  ( 𝑆  ⊆  𝐵  ∧   0   ∈  𝑆 ) )  →   0   =  ( 0g ‘ 𝐻 ) ) |