Step |
Hyp |
Ref |
Expression |
1 |
|
submnd0.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
submnd0.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
submnd0.h |
⊢ 𝐻 = ( 𝐺 ↾s 𝑆 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
6 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
7 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) → 0 ∈ 𝑆 ) |
8 |
3 1
|
ressbas2 |
⊢ ( 𝑆 ⊆ 𝐵 → 𝑆 = ( Base ‘ 𝐻 ) ) |
9 |
8
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) → 𝑆 = ( Base ‘ 𝐻 ) ) |
10 |
7 9
|
eleqtrd |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) → 0 ∈ ( Base ‘ 𝐻 ) ) |
11 |
|
fvex |
⊢ ( Base ‘ 𝐻 ) ∈ V |
12 |
9 11
|
eqeltrdi |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) → 𝑆 ∈ V ) |
13 |
12
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ) → 𝑆 ∈ V ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
15 |
3 14
|
ressplusg |
⊢ ( 𝑆 ∈ V → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
16 |
13 15
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ) → ( +g ‘ 𝐺 ) = ( +g ‘ 𝐻 ) ) |
17 |
16
|
oveqd |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ) → ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = ( 0 ( +g ‘ 𝐻 ) 𝑥 ) ) |
18 |
|
simpll |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) → 𝐺 ∈ Mnd ) |
19 |
3 1
|
ressbasss |
⊢ ( Base ‘ 𝐻 ) ⊆ 𝐵 |
20 |
19
|
sseli |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐻 ) → 𝑥 ∈ 𝐵 ) |
21 |
1 14 2
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
22 |
18 20 21
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ) → ( 0 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
23 |
17 22
|
eqtr3d |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ) → ( 0 ( +g ‘ 𝐻 ) 𝑥 ) = 𝑥 ) |
24 |
16
|
oveqd |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = ( 𝑥 ( +g ‘ 𝐻 ) 0 ) ) |
25 |
1 14 2
|
mndrid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) |
26 |
18 20 25
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 0 ) = 𝑥 ) |
27 |
24 26
|
eqtr3d |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( +g ‘ 𝐻 ) 0 ) = 𝑥 ) |
28 |
4 5 6 10 23 27
|
ismgmid2 |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd ) ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) → 0 = ( 0g ‘ 𝐻 ) ) |