Metamath Proof Explorer


Theorem submrcl

Description: Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Assertion submrcl ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝑀 ∈ Mnd )

Proof

Step Hyp Ref Expression
1 df-submnd SubMnd = ( 𝑠 ∈ Mnd ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ( ( 0g𝑠 ) ∈ 𝑡 ∧ ∀ 𝑥𝑡𝑦𝑡 ( 𝑥 ( +g𝑠 ) 𝑦 ) ∈ 𝑡 ) } )
2 1 mptrcl ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) → 𝑀 ∈ Mnd )