Step |
Hyp |
Ref |
Expression |
1 |
|
inss2 |
⊢ ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 |
2 |
1
|
a1i |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 ) |
3 |
|
simpr |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) |
4 |
|
pwidg |
⊢ ( 𝐴 ∈ 𝐶 → 𝐴 ∈ 𝒫 𝐴 ) |
5 |
4
|
adantl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ 𝒫 𝐴 ) |
6 |
3 5
|
elind |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → 𝐴 ∈ ( 𝐶 ∩ 𝒫 𝐴 ) ) |
7 |
|
simp1l |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |
8 |
|
inss1 |
⊢ ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝐶 |
9 |
|
sstr |
⊢ ( ( 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝐶 ) → 𝑥 ⊆ 𝐶 ) |
10 |
8 9
|
mpan2 |
⊢ ( 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) → 𝑥 ⊆ 𝐶 ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ⊆ 𝐶 ) |
12 |
|
simp3 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ≠ ∅ ) |
13 |
|
mreintcl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑥 ⊆ 𝐶 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐶 ) |
14 |
7 11 12 13
|
syl3anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐶 ) |
15 |
|
sstr |
⊢ ( ( 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ ( 𝐶 ∩ 𝒫 𝐴 ) ⊆ 𝒫 𝐴 ) → 𝑥 ⊆ 𝒫 𝐴 ) |
16 |
1 15
|
mpan2 |
⊢ ( 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) → 𝑥 ⊆ 𝒫 𝐴 ) |
17 |
16
|
3ad2ant2 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝑥 ⊆ 𝒫 𝐴 ) |
18 |
|
intssuni2 |
⊢ ( ( 𝑥 ⊆ 𝒫 𝐴 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ ∪ 𝒫 𝐴 ) |
19 |
17 12 18
|
syl2anc |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ ∪ 𝒫 𝐴 ) |
20 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
21 |
19 20
|
sseqtrdi |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ 𝐴 ) |
22 |
|
elpw2g |
⊢ ( 𝐴 ∈ 𝐶 → ( ∩ 𝑥 ∈ 𝒫 𝐴 ↔ ∩ 𝑥 ⊆ 𝐴 ) ) |
23 |
22
|
adantl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → ( ∩ 𝑥 ∈ 𝒫 𝐴 ↔ ∩ 𝑥 ⊆ 𝐴 ) ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ( ∩ 𝑥 ∈ 𝒫 𝐴 ↔ ∩ 𝑥 ⊆ 𝐴 ) ) |
25 |
21 24
|
mpbird |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝒫 𝐴 ) |
26 |
14 25
|
elind |
⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) ∧ 𝑥 ⊆ ( 𝐶 ∩ 𝒫 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ ( 𝐶 ∩ 𝒫 𝐴 ) ) |
27 |
2 6 26
|
ismred |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝐴 ∈ 𝐶 ) → ( 𝐶 ∩ 𝒫 𝐴 ) ∈ ( Moore ‘ 𝐴 ) ) |