Metamath Proof Explorer


Theorem subne0ad

Description: If the difference of two complex numbers is nonzero, they are unequal. Converse of subne0d . Contrapositive of subeq0bd . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
pncand.2 ( 𝜑𝐵 ∈ ℂ )
subne0ad.3 ( 𝜑 → ( 𝐴𝐵 ) ≠ 0 )
Assertion subne0ad ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 pncand.2 ( 𝜑𝐵 ∈ ℂ )
3 subne0ad.3 ( 𝜑 → ( 𝐴𝐵 ) ≠ 0 )
4 1 2 subeq0ad ( 𝜑 → ( ( 𝐴𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )
5 4 necon3bid ( 𝜑 → ( ( 𝐴𝐵 ) ≠ 0 ↔ 𝐴𝐵 ) )
6 3 5 mpbid ( 𝜑𝐴𝐵 )