| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-neg |
⊢ - 𝐵 = ( 0 − 𝐵 ) |
| 2 |
1
|
oveq2i |
⊢ ( 𝐴 − - 𝐵 ) = ( 𝐴 − ( 0 − 𝐵 ) ) |
| 3 |
|
0cn |
⊢ 0 ∈ ℂ |
| 4 |
|
subsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − ( 0 − 𝐵 ) ) = ( ( 𝐴 − 0 ) + 𝐵 ) ) |
| 5 |
3 4
|
mp3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − ( 0 − 𝐵 ) ) = ( ( 𝐴 − 0 ) + 𝐵 ) ) |
| 6 |
2 5
|
eqtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − - 𝐵 ) = ( ( 𝐴 − 0 ) + 𝐵 ) ) |
| 7 |
|
subid1 |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 − 0 ) = 𝐴 ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 0 ) = 𝐴 ) |
| 9 |
8
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 0 ) + 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| 10 |
6 9
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − - 𝐵 ) = ( 𝐴 + 𝐵 ) ) |