Metamath Proof Explorer


Theorem subneintr2d

Description: Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcan2d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
pncand.2 ( 𝜑𝐵 ∈ ℂ )
subaddd.3 ( 𝜑𝐶 ∈ ℂ )
subneintr2d.4 ( 𝜑𝐴𝐵 )
Assertion subneintr2d ( 𝜑 → ( 𝐴𝐶 ) ≠ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 pncand.2 ( 𝜑𝐵 ∈ ℂ )
3 subaddd.3 ( 𝜑𝐶 ∈ ℂ )
4 subneintr2d.4 ( 𝜑𝐴𝐵 )
5 1 2 3 subcan2ad ( 𝜑 → ( ( 𝐴𝐶 ) = ( 𝐵𝐶 ) ↔ 𝐴 = 𝐵 ) )
6 5 necon3bid ( 𝜑 → ( ( 𝐴𝐶 ) ≠ ( 𝐵𝐶 ) ↔ 𝐴𝐵 ) )
7 4 6 mpbird ( 𝜑 → ( 𝐴𝐶 ) ≠ ( 𝐵𝐶 ) )