Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
subneintr2d
Metamath Proof Explorer
Description: Introducing subtraction on both sides of a statement of inequality.
Contrapositive of subcan2d . (Contributed by David Moews , 28-Feb-2017)
Ref
Expression
Hypotheses
negidd.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
pncand.2
⊢ ( 𝜑 → 𝐵 ∈ ℂ )
subaddd.3
⊢ ( 𝜑 → 𝐶 ∈ ℂ )
subneintr2d.4
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 )
Assertion
subneintr2d
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) ≠ ( 𝐵 − 𝐶 ) )
Proof
Step
Hyp
Ref
Expression
1
negidd.1
⊢ ( 𝜑 → 𝐴 ∈ ℂ )
2
pncand.2
⊢ ( 𝜑 → 𝐵 ∈ ℂ )
3
subaddd.3
⊢ ( 𝜑 → 𝐶 ∈ ℂ )
4
subneintr2d.4
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 )
5
1 2 3
subcan2ad
⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ↔ 𝐴 = 𝐵 ) )
6
5
necon3bid
⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) ≠ ( 𝐵 − 𝐶 ) ↔ 𝐴 ≠ 𝐵 ) )
7
4 6
mpbird
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) ≠ ( 𝐵 − 𝐶 ) )