Metamath Proof Explorer


Theorem subneintrd

Description: Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcand . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
pncand.2 ( 𝜑𝐵 ∈ ℂ )
subaddd.3 ( 𝜑𝐶 ∈ ℂ )
subneintrd.4 ( 𝜑𝐵𝐶 )
Assertion subneintrd ( 𝜑 → ( 𝐴𝐵 ) ≠ ( 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 pncand.2 ( 𝜑𝐵 ∈ ℂ )
3 subaddd.3 ( 𝜑𝐶 ∈ ℂ )
4 subneintrd.4 ( 𝜑𝐵𝐶 )
5 1 2 3 subcanad ( 𝜑 → ( ( 𝐴𝐵 ) = ( 𝐴𝐶 ) ↔ 𝐵 = 𝐶 ) )
6 5 necon3bid ( 𝜑 → ( ( 𝐴𝐵 ) ≠ ( 𝐴𝐶 ) ↔ 𝐵𝐶 ) )
7 4 6 mpbird ( 𝜑 → ( 𝐴𝐵 ) ≠ ( 𝐴𝐶 ) )