Step |
Hyp |
Ref |
Expression |
1 |
|
subrdom.1 |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
2 |
|
subrdom.2 |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) |
3 |
|
domnnzr |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
5 |
|
eqid |
⊢ ( 𝑅 ↾s 𝑆 ) = ( 𝑅 ↾s 𝑆 ) |
6 |
5
|
subrgnzr |
⊢ ( ( 𝑅 ∈ NzRing ∧ 𝑆 ∈ ( SubRing ‘ 𝑅 ) ) → ( 𝑅 ↾s 𝑆 ) ∈ NzRing ) |
7 |
4 2 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ NzRing ) |
8 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → 𝑅 ∈ Domn ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
10 |
9
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
11 |
2 10
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
12 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → 𝑆 ⊆ ( Base ‘ 𝑅 ) ) |
13 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
14 |
5 9
|
ressbas2 |
⊢ ( 𝑆 ⊆ ( Base ‘ 𝑅 ) → 𝑆 = ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
15 |
11 14
|
syl |
⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
16 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → 𝑆 = ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
17 |
13 16
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → 𝑥 ∈ 𝑆 ) |
18 |
12 17
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
19 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
20 |
19 16
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → 𝑦 ∈ 𝑆 ) |
21 |
12 20
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
22 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
23 |
2
|
elexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
24 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
25 |
5 24
|
ressmulr |
⊢ ( 𝑆 ∈ V → ( .r ‘ 𝑅 ) = ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
26 |
23 25
|
syl |
⊢ ( 𝜑 → ( .r ‘ 𝑅 ) = ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
27 |
26
|
oveqd |
⊢ ( 𝜑 → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) ) |
28 |
27
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) ) |
29 |
|
subrgrcl |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
30 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
31 |
2 29 30
|
3syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
32 |
|
subrgsubg |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
33 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
34 |
33
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝑆 ) |
35 |
2 32 34
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝑆 ) |
36 |
5 9 33
|
ress0g |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0g ‘ 𝑅 ) ∈ 𝑆 ∧ 𝑆 ⊆ ( Base ‘ 𝑅 ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
37 |
31 35 11 36
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
38 |
37
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) |
39 |
22 28 38
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ) |
40 |
9 24 33
|
domneq0 |
⊢ ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ↔ ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) ) |
41 |
40
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Domn ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) ∧ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 0g ‘ 𝑅 ) ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) |
42 |
8 18 21 39 41
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ) |
43 |
38
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → ( 𝑥 = ( 0g ‘ 𝑅 ) ↔ 𝑥 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) |
44 |
38
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → ( 𝑦 = ( 0g ‘ 𝑅 ) ↔ 𝑦 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) |
45 |
43 44
|
orbi12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → ( ( 𝑥 = ( 0g ‘ 𝑅 ) ∨ 𝑦 = ( 0g ‘ 𝑅 ) ) ↔ ( 𝑥 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ∨ 𝑦 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) ) |
46 |
42 45
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) → ( 𝑥 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ∨ 𝑦 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) |
47 |
46
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) → ( ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) → ( 𝑥 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ∨ 𝑦 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) ) |
48 |
47
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) → ( ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) → ( 𝑥 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ∨ 𝑦 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) ) |
49 |
48
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ( ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) → ( 𝑥 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ∨ 𝑦 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) ) |
50 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) = ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) |
51 |
|
eqid |
⊢ ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) = ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) |
52 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) |
53 |
50 51 52
|
isdomn |
⊢ ( ( 𝑅 ↾s 𝑆 ) ∈ Domn ↔ ( ( 𝑅 ↾s 𝑆 ) ∈ NzRing ∧ ∀ 𝑥 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ∀ 𝑦 ∈ ( Base ‘ ( 𝑅 ↾s 𝑆 ) ) ( ( 𝑥 ( .r ‘ ( 𝑅 ↾s 𝑆 ) ) 𝑦 ) = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) → ( 𝑥 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ∨ 𝑦 = ( 0g ‘ ( 𝑅 ↾s 𝑆 ) ) ) ) ) ) |
54 |
7 49 53
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝑆 ) ∈ Domn ) |