| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrecd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 2 |
|
subrecd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 3 |
|
subrecd.3 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 4 |
|
subrecd.4 |
⊢ ( 𝜑 → 𝐵 ≠ 0 ) |
| 5 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 6 |
5 1 5 2 3 4
|
divsubdivd |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) − ( 1 / 𝐵 ) ) = ( ( ( 1 · 𝐵 ) − ( 1 · 𝐴 ) ) / ( 𝐴 · 𝐵 ) ) ) |
| 7 |
2
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝐵 ) = 𝐵 ) |
| 8 |
1
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝐴 ) = 𝐴 ) |
| 9 |
7 8
|
oveq12d |
⊢ ( 𝜑 → ( ( 1 · 𝐵 ) − ( 1 · 𝐴 ) ) = ( 𝐵 − 𝐴 ) ) |
| 10 |
9
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 · 𝐵 ) − ( 1 · 𝐴 ) ) / ( 𝐴 · 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐴 · 𝐵 ) ) ) |
| 11 |
6 10
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 / 𝐴 ) − ( 1 / 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐴 · 𝐵 ) ) ) |