Metamath Proof Explorer
Description: Subtraction of reciprocals. (Contributed by Scott Fenton, 9-Jan-2017)
|
|
Ref |
Expression |
|
Hypotheses |
subreci.1 |
⊢ 𝐴 ∈ ℂ |
|
|
subreci.2 |
⊢ 𝐵 ∈ ℂ |
|
|
subreci.3 |
⊢ 𝐴 ≠ 0 |
|
|
subreci.4 |
⊢ 𝐵 ≠ 0 |
|
Assertion |
subreci |
⊢ ( ( 1 / 𝐴 ) − ( 1 / 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐴 · 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
subreci.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
subreci.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
subreci.3 |
⊢ 𝐴 ≠ 0 |
4 |
|
subreci.4 |
⊢ 𝐵 ≠ 0 |
5 |
|
subrec |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 1 / 𝐴 ) − ( 1 / 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐴 · 𝐵 ) ) ) |
6 |
1 3 2 4 5
|
mp4an |
⊢ ( ( 1 / 𝐴 ) − ( 1 / 𝐵 ) ) = ( ( 𝐵 − 𝐴 ) / ( 𝐴 · 𝐵 ) ) |