Step |
Hyp |
Ref |
Expression |
1 |
|
subrg1.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
2 |
|
subrg1.2 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
4 |
3
|
subrg1cl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ 𝐴 ) |
5 |
1
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
6 |
4 5
|
eleqtrd |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑆 ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
8 |
7
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
9 |
5 8
|
eqsstrrd |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) ) |
10 |
9
|
sselda |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
11 |
|
subrgrcl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) |
12 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
13 |
7 12 3
|
ringidmlem |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
14 |
11 13
|
sylan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
15 |
1 12
|
ressmulr |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
16 |
15
|
oveqd |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ↔ ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ) ) |
18 |
15
|
oveqd |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) ) |
19 |
18
|
eqeq1d |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ↔ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
20 |
17 19
|
anbi12d |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ↔ ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) ) |
21 |
20
|
biimpa |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
22 |
14 21
|
syldan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
23 |
10 22
|
syldan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
24 |
23
|
ralrimiva |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) |
25 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
27 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
28 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
29 |
26 27 28
|
isringid |
⊢ ( 𝑆 ∈ Ring → ( ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) ↔ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑅 ) ) ) |
30 |
25 29
|
syl |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑆 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( .r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) ) ↔ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑅 ) ) ) |
31 |
6 24 30
|
mpbi2and |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑅 ) ) |
32 |
2 31
|
eqtr4id |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 1 = ( 1r ‘ 𝑆 ) ) |