Step |
Hyp |
Ref |
Expression |
1 |
|
subrg1ascl.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
subrg1ascl.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
3 |
|
subrg1ascl.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
4 |
|
subrg1ascl.u |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
5 |
|
subrg1ascl.r |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
6 |
|
subrg1ascl.c |
⊢ 𝐶 = ( algSc ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
8 |
1 2
|
ply1ascl |
⊢ 𝐴 = ( algSc ‘ ( 1o mPoly 𝑅 ) ) |
9 |
|
eqid |
⊢ ( 1o mPoly 𝐻 ) = ( 1o mPoly 𝐻 ) |
10 |
|
1on |
⊢ 1o ∈ On |
11 |
10
|
a1i |
⊢ ( 𝜑 → 1o ∈ On ) |
12 |
4 6
|
ply1ascl |
⊢ 𝐶 = ( algSc ‘ ( 1o mPoly 𝐻 ) ) |
13 |
7 8 3 9 11 5 12
|
subrgascl |
⊢ ( 𝜑 → 𝐶 = ( 𝐴 ↾ 𝑇 ) ) |