| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subrg1ascl.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 2 |  | subrg1ascl.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 3 |  | subrg1ascl.h | ⊢ 𝐻  =  ( 𝑅  ↾s  𝑇 ) | 
						
							| 4 |  | subrg1ascl.u | ⊢ 𝑈  =  ( Poly1 ‘ 𝐻 ) | 
						
							| 5 |  | subrg1ascl.r | ⊢ ( 𝜑  →  𝑇  ∈  ( SubRing ‘ 𝑅 ) ) | 
						
							| 6 |  | subrg1asclcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑈 ) | 
						
							| 7 |  | subrg1asclcl.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 8 |  | subrg1asclcl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐾 ) | 
						
							| 9 |  | eqid | ⊢ ( 1o  mPoly  𝑅 )  =  ( 1o  mPoly  𝑅 ) | 
						
							| 10 | 1 2 | ply1ascl | ⊢ 𝐴  =  ( algSc ‘ ( 1o  mPoly  𝑅 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 1o  mPoly  𝐻 )  =  ( 1o  mPoly  𝐻 ) | 
						
							| 12 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  1o  ∈  On ) | 
						
							| 14 | 4 6 | ply1bas | ⊢ 𝐵  =  ( Base ‘ ( 1o  mPoly  𝐻 ) ) | 
						
							| 15 | 9 10 3 11 13 5 14 7 8 | subrgasclcl | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑋 )  ∈  𝐵  ↔  𝑋  ∈  𝑇 ) ) |