Step |
Hyp |
Ref |
Expression |
1 |
|
subrg1ascl.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
subrg1ascl.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
3 |
|
subrg1ascl.h |
⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) |
4 |
|
subrg1ascl.u |
⊢ 𝑈 = ( Poly1 ‘ 𝐻 ) |
5 |
|
subrg1ascl.r |
⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) |
6 |
|
subrg1asclcl.b |
⊢ 𝐵 = ( Base ‘ 𝑈 ) |
7 |
|
subrg1asclcl.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
8 |
|
subrg1asclcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) |
9 |
|
eqid |
⊢ ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 ) |
10 |
1 2
|
ply1ascl |
⊢ 𝐴 = ( algSc ‘ ( 1o mPoly 𝑅 ) ) |
11 |
|
eqid |
⊢ ( 1o mPoly 𝐻 ) = ( 1o mPoly 𝐻 ) |
12 |
|
1on |
⊢ 1o ∈ On |
13 |
12
|
a1i |
⊢ ( 𝜑 → 1o ∈ On ) |
14 |
|
eqid |
⊢ ( PwSer1 ‘ 𝐻 ) = ( PwSer1 ‘ 𝐻 ) |
15 |
4 14 6
|
ply1bas |
⊢ 𝐵 = ( Base ‘ ( 1o mPoly 𝐻 ) ) |
16 |
9 10 3 11 13 5 15 7 8
|
subrgasclcl |
⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ↔ 𝑋 ∈ 𝑇 ) ) |