Metamath Proof Explorer


Theorem subrg1asclcl

Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015)

Ref Expression
Hypotheses subrg1ascl.p 𝑃 = ( Poly1𝑅 )
subrg1ascl.a 𝐴 = ( algSc ‘ 𝑃 )
subrg1ascl.h 𝐻 = ( 𝑅s 𝑇 )
subrg1ascl.u 𝑈 = ( Poly1𝐻 )
subrg1ascl.r ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
subrg1asclcl.b 𝐵 = ( Base ‘ 𝑈 )
subrg1asclcl.k 𝐾 = ( Base ‘ 𝑅 )
subrg1asclcl.x ( 𝜑𝑋𝐾 )
Assertion subrg1asclcl ( 𝜑 → ( ( 𝐴𝑋 ) ∈ 𝐵𝑋𝑇 ) )

Proof

Step Hyp Ref Expression
1 subrg1ascl.p 𝑃 = ( Poly1𝑅 )
2 subrg1ascl.a 𝐴 = ( algSc ‘ 𝑃 )
3 subrg1ascl.h 𝐻 = ( 𝑅s 𝑇 )
4 subrg1ascl.u 𝑈 = ( Poly1𝐻 )
5 subrg1ascl.r ( 𝜑𝑇 ∈ ( SubRing ‘ 𝑅 ) )
6 subrg1asclcl.b 𝐵 = ( Base ‘ 𝑈 )
7 subrg1asclcl.k 𝐾 = ( Base ‘ 𝑅 )
8 subrg1asclcl.x ( 𝜑𝑋𝐾 )
9 eqid ( 1o mPoly 𝑅 ) = ( 1o mPoly 𝑅 )
10 1 2 ply1ascl 𝐴 = ( algSc ‘ ( 1o mPoly 𝑅 ) )
11 eqid ( 1o mPoly 𝐻 ) = ( 1o mPoly 𝐻 )
12 1on 1o ∈ On
13 12 a1i ( 𝜑 → 1o ∈ On )
14 eqid ( PwSer1𝐻 ) = ( PwSer1𝐻 )
15 4 14 6 ply1bas 𝐵 = ( Base ‘ ( 1o mPoly 𝐻 ) )
16 9 10 3 11 13 5 15 7 8 subrgasclcl ( 𝜑 → ( ( 𝐴𝑋 ) ∈ 𝐵𝑋𝑇 ) )