Description: A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgacl.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| Assertion | subrgacl | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 + 𝑌 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgacl.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 2 | subrgsubg | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ) | |
| 3 | 1 | subgcl | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 + 𝑌 ) ∈ 𝐴 ) |
| 4 | 2 3 | syl3an1 | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 + 𝑌 ) ∈ 𝐴 ) |